SOF TWARE
ENGINEERING

FOR GAME DEVELOPERS

JOHN P. FLYNT, PH.D.
WITH OMAR SALEM

SERIES EDITOR
ANDRE LAMDTHE, CEO, XTREME GAMES LLC

SOFTWARE
ENGINEERING
FOR GAME
DEVELOPERS

@

John P. Flynt

with Omar Salem

THOINISON

e

COURSE TECHNOLOGY

Professional m Trade m Reference

TEAM LING - LIVe, Informative, Non-cost and cenuine !

© 2005 by Thomson Course Technology PTR. All rights reserved. No part
of this book may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or
by any information storage or retrieval system without written permis-
sion from Thomson Course Technology PTR, except for the inclusion of
brief quotations in a review.

The Premier Press and Thomson Course Technology PTR logo and
related trade dress are trademarks of Thomson Course Technology PTR
and may not be used without written permission.

SmartDraw is a trademark of SmartDraw.com, Inc. Windows, Microsoft
Project, Microsoft Word, Microsoft Excel, DirectX, and Microsoft Visual
Studio .NET are trademarks of Microsoft Corporation. FrameMaker and
Photoshop are trademarks of Adobe Systems Incorporated.

All other trademarks are the property of their respective owners.

Important: Thomson Course Technology PTR cannot provide software
support. Please contact the appropriate software manufacturer’s technical
support line or Web site for assistance.

Thomson Course Technology PTR and the author have attempted
throughout this book to distinguish proprietary trademarks from descrip-
tive terms by following the capitalization style used by the manufacturer.

Information contained in this book has been obtained by Thomson
Course Technology PTR from sources believed to be reliable. However,
because of the possibility of human or mechanical error by our sources,
Thomson Course Technology PTR, or others, the Publisher does not
guarantee the accuracy, adequacy, or completeness of any information
and is not responsible for any errors or omissions or the results obtained
from use of such information. Readers should be particularly aware of the
fact that the Internet is an ever-changing entity. Some facts may have
changed since this book went to press.

Educational facilities, companies, and organizations interested in multiple
copies or licensing of this book should contact the publisher for quantity
discount information. Training manuals, CD-ROMs, and portions of this
book are also available individually or can be tailored for specific needs.

ISBN: 1-59200-155-6

Library of Congress Catalog Card Number: 2004106451
Printed in the United States of America
0405060708BH 10987654321

THOINVSON

* -

COURSE TECHNOLOGY

Professional m Trade m Reference

Thomson Course Technology PTR, a division of
Thomson Course Technology
25 Thomson Place
Boston, MA 02210
http://www.courseptr.com

SVP, Thomson Course
Technology PTR:
Andy Shafran

Publisher:
Stacy L. Hiquet

Senior Marketing Manager:
Sarah O’Donnell

Marketing Manager:
Heather Hurley

Manager of Editorial Services:
Heather Talbot

Senior Acquisitions Editor:
Emi Smith

Senior Editor:
Mark Garvey

Associate Marketing Manager:
Kristin Eisenzopf

Series Editor:
André LaMothe

Marketing Coordinator:
Jordan Casey

Project/Copy Editor:
Karen A. Gill

Technical Reviewer:
John Hollis

PTR Editorial Services Coordinator:

Elizabeth Furbish

Interior Layout Tech:
Susan Honeywell

Cover Designer:
Mike Tanamachi

CD-ROM Producer:
Brandon Penticuff

Indexer:
Sharon Shock

Proofreader:
Kim Benbow

TEAM LING - LIVe, Informative, Non-cost and cenuine !

This book is dedicated to its readers.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

ACKNOWLEDGMENTS

the game simply would not exist had he not been willing to make the effort he did.
Ben was instrumental in the software design and saw to development of the game
from beginning to end. He was by far the central and greatest contributor.

B en Vinson was the lead programmer for Ankh. He exerted an enormous effort, and

John Rose was the game designer for Ankh. John authored the game design document. He
also composed the music, wrote the user’s guide, created the installation package, and
was helpful in documenting CVS. He was at the center of the effort. (Thanks to Jayme
Catalano for keeping track of John.)

Carlos Villar worked as a development and maintenance programmer on Ankh. His work
on the design, sound, and Al was a strong contribution to the project’s success.

Paul Whitehead was the central figure in creation of the art for Ankh. He showed amaz-
ing drive as he developed the meshes and textures for the game. The game just would not
have happened had he not been a part of the team.

Adrian Flynt developed the character art to accompany Paul’s work.
Ben Schulz contributed voice talent.

John Hollis was the book’s technical reader. John brought to this effort a perspective con-
nected with the larger world of software engineering. John provided an essential element
in the development of the content.

Charlie Allbee offered important suggestions concerning audience needs.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Acknowledgments

Rob Johnson made suggestions about how to structure the text.
Iraj Eftekhari, Deb Mahon, and Tony Caggiano offered encouragement.
Amy Flynt checked the math.

Marcia Flynt helped with contracts and accounting. The book would not have been writ-
ten without her support.

Many people at Thomson, Premier, and Course Technology did their usual magic.
Karen Gill edited the text.

André LaMothe provided the example of how to write books about developing games.
Emi Smith guided the effort from its conception.

Stacy Hiquet made everything possible.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Vi

ABOUT THE AUTHOR

JoHN P. FLynT, Ph.D,, is a software developer who has worked extensively as a software
engineering process specialist. He is president of The ewowe Corporation (http://
www.ewowe.com), which specializes in interactive educational software and related prod-
ucts and services. His experience with game development began when he programmed a
game for education. He has taught game development and has worked with colleges and
universities to create game programs. His educational background includes degrees from
the University of Chicago and the University of Colorado. Along with his wife, Marcia,
and his children, Amy and Adrian, John lives in the foothills north of Boulder, Colorado.

OMAR SALEM lives in Denver, Colorado. Prior to becoming a game development teacher,
he was a member of the technical staff at Bell Labs/Lucent Technologies/Avaya, where he
worked for nearly 20 years. His emphasis is on both development and quality assurance
software engineering. He holds BS and MS degrees in computer science and mathemat-
ics. To date, Omar has seen 17 large-scale software systems to completion, and all prod-
ucts he has worked on have been successfully deployed.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

ABOUT THE SERIES EDITOR

ANDRE LAMOTHE, CEO of Xtreme Games LLC and the creator of the XGameStation, has
been involved in the computing industry for more than 27 years. He wrote his first game
for the TRS-80 and has been hooked ever since! His experience includes 2D/3D graphics,
Al research at NASA, compiler design, robotics, virtual reality, and telecommunications.
His books are top sellers in the game programming genre, and his experience is echoed in
the Thomson Course Technology PTR Game Development books. You can contact André
at ceo@nurve.net and http://www.xgamestation.com.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

vii

viii

LETTER FROM THE SERIES
EDITOR FOR SOFTWARE
ENGINEERING FOR GAME i
DEVELOPERS

oftware engineering. This is a phrase that almost no one on the planet can actually

define. Sure, many people have the title of software engineer, many books are writ-

ten on the subject, and many people have a whole slew of definitions, but at the end
of the day, what is it? Well, I will tell you what it isn’t. Software engineering is not about
C++, and it’s surely not about object-oriented programming. Those are tools, and soft-
ware engineering is simply engineering. And herein is the problem. Engineers in elec-
tronics, mechanics, and other fields have been around forever. They are taught how to
think, solve problems, organize their work, test, manufacture, assemble, distribute, and so
forth. Programmers are just guys who learned a computer language and then made pro-
grams; they are not engineers. Before we even knew what happened, there were millions
of programs written without proper engineering. Thus, a few years ago, a new term was
coined “software engineering” like it was a new idea! I have been software engineering for
25 years; engineering is engineering. And that’s where this book comes in.

This book isn’t some theoretical masterpiece that uses Venn diagrams and cost analysis to
show you how many hours should be spent on a for loop. This is a real book, by a real
engineer who happens to apply engineering techniques to software. Therefore, you aren’t
going to learn about something that is unique to software. These engineering techniques
will, of course, use tools of the trade such as C++, object-oriented programming, config-
uration management, UML diagrams, patterns, process improvement, and so forth.

This book is not going to make you a better programmer; programming is an art form.
Instead, this book is going to make you a better software engineer. And, in the real world,
companies do not need programmers; they need engineers who are reliable, efficient, and
expert.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Letter from the Series Editor

I am excited about this book and its authors, John Flynt and Omar Salem. They’re sea-
soned professionals who have both academic and professional backgrounds. They have
worked in the real world and know what the real world wants. In this book, you aren’t
going to be inundated by useless information, but given exactly what you need: the tools
to organize your programming into proper engineering patterns.

So without further ado, start your first program the proper way. Open your engineering note-
book, date and sign it, title the program you are going to design, and you are ready to go!

i oW

André LaMothe
Game Development Series Editor, 2004

TEAM LING - LIVe, Informative, Non-cost and cenuine !

ix

CONTENTS AT A GLANCE

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Introductionc..iiiiiiiii it i i XXXiV
GettingintotheGame iiiiiiiiinnnrinrnnrnranns 1
Requirements—Getting the Picturet 27
A Tutorial: UML and Object-Oriented Programming 75
Software Design—Much Ado About Something 121
Old Is Good—The Library Approach 165
Object-Oriented Fantasies and Realities 201
PlsforPatternottt eaaeaaens 233
Risk Analysiscuiiiiiriiii e areananeannnns 269
lterating Designo it ii i e e e e 303
Control Freaks and Configuration Management 341
Evident Evil—The Artof Testingcciiiant. 381
Numbers for Nabobsottt 429
What People Do—Development Strategies 473
Practice, Practice, Practicet 511
TeamWork ... i i e i 539
Process Improvementottt 577
Release Planning and Management 617
Documentation—Learning Howtolearn...................... 659
Philosophy of Software Engineering and Game Development691
Installationand Setup i i e 731
Working with Files i, 741
Source Control oot e e 743
Software Engineering and Game Desigh Documentation 751
RESOUKCES ...ttt i ettt e et e e e 811
GlOSSANY . .ottt it i e e e 815
INdEX ..ottt i et 821

TEAM LING - LIVe, Informative, Non-cost and cenuine !

CONTENTS

Chapter 1

Introduction i XXXiv
GettingintotheGame 1
Software Engineering and Game Development 1
Engineering i e 2
Cottage Industries and Formalized Disciplines 3
Repetition and Perfection i 4
To ENgineer Is... . ..o 5
The Path e 7
INtegrity « . e 10
Answering Risk with Design 1
Game Design and Software Design 13
Design and Development 14
Class Design and Implementation 16
Refactoringand Patterns, 17
Developmentand Testing 19
Code Documentation, 21
Learning and Capabilities 21
Maintenance and Revision 23
Measurement 23
The Industry e 23
Professionand Craft 25
CoNCIUSION . .\ 26

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Xi

Xii

Contents

Chapter 2

Requirements—Getting the Picture 27
Essential Notions e 28
What Are Requirements? 28
Where Do Requirements Originate? 29
Who Gathers Requirements? 31
Why Do You Need Requirements? 32
What Results from Requirements? 33
Avoiding Difficulties with Requirements 35
Establish the Scope of the Project 36
Identify Your Customers i 38
Feasibility 38
Uncontrolled Growth 39
What Makes a Good Requirements Specification? 40
Make Requirements Complete 141
Make Requirements Correct, 41
Necessary Requirements Only, 42
Consider the Feasibility of a Requirement 42
Requirement Priorities 43
Eliminate Ambiguity L 43
Verify and Validate Requirements 43
Manage Requirements for Change 44
Engineering Requirements 44
Iterative Increments 44
Cycles of Requirements Development 45
Eliciting Requirements i 46
The Requirements Specification Document 47
Using the Design Document for the Game 52
Using Mod Requirements iiiinine.n.. 55
Preliminaries of Use Case Exploration 55
Exploration 58
Using Use Case Diagrams and Scenarios 59
The Sixty-Seconds-of-Play Use Case Diagram 60
Making a Starting Specification List 61
Finding Potential Class Names 63
Usinga TORChart i 63

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 3

Contents
ANAlYSIS .. e 64
Using Use Cases to Analyze Actions 65
Activity Diagrams 68
Refinement, Verification, and Validation 68
Using Use Cases for Testsccuiiiiiiinnnnnnnnns 69
Using a Requirements Matrix 70
Refining Specification Dependencies 70
Anticipating and Managing Change 71
Change Procedures and Reviews 71
Document Control 72
CoNCIUSION . ..t 72
A Tutorial: UML and Object-Oriented Programming 75
UML HiStOry . . ettt 75
A UML Diagram and Its Elements 76
Why Bother with Symbols? 77
Starter Terms e 79
UML Diagramsottt e 80
Use Case Diagramsttt 83
Use Cases Tell Stories i 84
What 2 .. e 85
Different Use Casesottt e 87
Activity Diagrams e 89
Class Diagrams oot e e e e 91
Class and Object Basics 92
Class Diagrams in Practice 93
Diagramming a Class i 94
Class Relations and Class Diagrams 9%
Generalization 99
AsSSOCIations 102
Aggregation and Composition 105
Different Types of Association 106
Object Diagramst 107
Links, Dynamic Modeling, and Messages 109
Message Types i e 110

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Xiii

Xiv

Contents

MESSage AITOWS . . vttt et e e 110
Message Parameters i, 111
Sequence Diagramst e 112
Objects and Lifelines i 112
How to Read Messagesouuiiinnnnnnnnnnnn 113
Collaboration Diagramst 113
State Chart Diagramst 114
Events, States, and Transitions 115
More on State Transitions 116
Component Diagramst 116
Package Diagrams 118
Deployment Diagramsottt e 118
Conclusion e 119
Chapter 4 Software Design—Much Ado About Something 121
Beginning Design 122
Why Design? 122
Architecture and Design 125
Designing for Quality i 132
Maintainability 133
Portability 133
Usability 134
Performance e 134
Testability 134
Efficiency o 134
Reliability 135
Finding Elements and Relationships 135
CRCCArds ..ottt 137
Usingthe TORChart 138
Generating Operationst 140
Moving to a Sequence Diagram 140
Reframing Operations with a Collaboration Diagram 142
Low-Level Design ToOlst 143
Class Diagramsttt e 143
Operation Specifications 145
Component/Package Diagrams, 146

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 5

Contents

Presenting the System Design, 146
TheSDD Template i 147
HowtoSetUptheSDD 147
Introducingan SDD e 148
Conceptual orUse Case Viewcciiiiinnnnnnn... 150
Behavioral or Implementation View 150
Logical View 150
Component View 150
Deployment View i 151

Designing the System in Stripes 151
Increments and Iteration in Stripes 151
Team Efforts at Designing System Stripes 152

A First Stripe from Ankh 154
Beginning a Stripe 155
The Use Case for the First Stripe 156
Starting witha Context 156
Discoveringa Componentt 157
Movingto aScenario i 158
Stripe Collaboration Diagram 160
Refining Operations and Generating Classes 160

Creating the Component Diagram 162

Verification 162

CoNClUSION . .. e 163

Old Is Good—The Library Approach 165

Libraries and Reuse in General 165
Open C++ Libraries 167
Game Engine Libraries i 167
Profiled Engines i 168

Criteriafor Reuse 169
What Qualifies for Reusable 170
The Problems of Creating Reusable Code 171

Taking a Class Approach 172
Using Standard Class Forms 173
Class Implementation 175

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XV

XVi

Contents

Chapter 6

Making Code Efficient 178
Needless Declaration i, 178
Needless COPYING ..o v i it e e 179
Reference Counting i, 180

Exceptionsand Errors 182
Tryand Catch 183
Declaring Exception Classes 184
Defining Exception Classes, 184
Throwing EXceptionst 187

Compatibility and Maintainability 188
Reducing Redundancy, 188
The Danger of Early Optimization 191

Using Shallow Hierarchies 191

Installation and Ease of Use, 191

The Boost and STL Libraries i .. 193
Usingthe STL e 194
Using Boost oo e 195

Documentation and Deployment 196
Watch for Cut-and-Paste Code 196
Do Not Address Obvious Things 196
State the Common Use First 197
Show HowtoDo Things 197
Avoid Preaching 198
Self-Documenting Code i, 198

CoNclUSION 199

Object-Oriented Fantasies and Realities 201

Class BEginNingso e 201
The Conceptof Classt 202
SO - it e 202
Construction 203
Interface e 203

Abstraction 205
Abstract States 205
Abstract Behavior 205

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 7

Contents

Encapsulation 206
Cohesion e 207
Responsibilities 208

Coupling .. 208

Decoupling 209

Inheritance e 210
Generalization 210
Specialization 211

ASSOCIAtioNS . . . oo e 213
Aggregation or Hierarchy? 213
Aggregation e 214
ComPpPOSItioN e 214

Abstract Classes e 215

Polymorphism 216

Coupling Problems with Collections of Classes 217

Points on Class Design and Implementation 218
Information Hiding 219

Refactoring i 220

Modularity 220
What Destroys Modularity? 222
General Remedies 223

Using Refactoring i 224
Practices of Refactoring 224
Specific llls and Remedies 225

CoNClUSION . . e 230

PlsforPattern.............o, 233

Patterns and Their Contexts 234
The History of Patterns 234
Patternsand Objects 237
Pattern Origins i e 238
GOF o 239
Kindsof Patterns i 240
AShort Listof Patterns 241
How to Document Patterns 244

Applied Patterns 248

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XVii

XViii

Contents

Chapter 8

Singleton 249
Composite Pattern Features 251
Chain of Responsibility Pattern Features 252
State Pattern Features 253
Strategy Pattern Features 254
Observer Pattern Features i, 255
Facade Pattern Featuresc.c. i, 257
Memento Pattern Features 258
Command Pattern e 259
Boss Pattern 261
Boss Implementation 262
Conclusion e 267
Risk Analysist 269
The Storyof Risko 269
Applied Risk Analysis e 271
External Risks 272
Internal Risks 273
What Promotes Risk Assessment?, 274
General Attitudes Toward Risk and Risk Management 274
Things That Foster Awareness oo, 277
GOAlS . 279
Strategies e 280
The Paradigm e 281
Identifying Risks 282
Scope Risk Identification L. 283
Schedule Risks Identification 286
Resource Risk Identification 287
Estimating Risk 290
Scope Risk Estimation L. 290
Schedule Risk Estimation 291
Resource Risk Estimation 293
Evaluating Risk 294
Evaluating Risks That Are Associated with Scope 294
Evaluating Schedule Risks 295
Evaluating Resource Risks 296

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 9

Contents
Planning for Risks i 297
Planning and Scope 298
Planning and Scheduling 298
Planning and Resourcesc..iuiiiieininnann.. 299
Controlling Risks i 299
Scope Control 300
Schedule Control 300
Resource Control 300
Monitoring Risks 301
Scope Monitoring 301
Schedule Monitoring i 301
Resource Monitoringt 301
CoNClUSION . . e 302
Iterating Designttt 303
Iterative Design Basics 304
Applied Design e 305
Software Systems and Gravity o i 307
Reversing Gravityt 307
Conceptualizing Iteration 307
Ankh Development Using Stripes 309
Stripe 1—OpPeNINg 309
Use Case SCeNArioottt i 310
Component View i e 310
Stripe 2.1—GUI Objects e 310
Use Slider Use Casettt 311
GUI Objects Component View 311
Stripe 2.2—Floor Tiling 312
Select Tile Use Case View 312
Level Floor Tiling Component View 313
Stripe 2.3—Mesh Placement 315
Select a Building Use Case View 315
Mesh Placement Component View 315
Stripe 24—Saveandload 316
SaveaMap Use Case Viewiiiiinnnnn... 316
Save and Load Component View 317

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XixX

XX

Contents

Chapter 10

Stripe 3.1—Navigate Alexandria 318
Navigate Alexandria Use Case View 318
Navigate Alexandria Component View 319

Stripe 4—Character Editor 320
Create Character Profile Use Case View 320
Character Editor Component View 321

Stripe 5—Unit Physics e 322
Walk Character Use Case View, 322
Unit Physics Component View 323

Stripe 6—Inventory ltems 324
Select Inventory Items Use Case View 324
Inventory Items Component View 325

Stripe 7—Combat 326
Battle Guard Use Case View, 326
Battle Guard Component View 327

Stripe 8—Acquire Skills 328
Acquire SkillsUse Case View 328
Acquire Skills Component View 329

Stripe 9—Acquire Weapon i e 330
Acquire Weapon Use Case View, 330
Acquire Weapon Component View 331

Stripe 10—View Statistics 332
View Strengths Use Case View 332
View Statistics Component View 333

Stripe 13—Save Replay 334
Save Replay Use Case View, 334
Save Replay Component View 335

Map Editor Resources 336

Construction Using the Map Editor 337

Game Design Specification i 338

CoNClUSION e 340

Control Freaks and Configuration Management 341

Software Configuration Management in General 342

Policies 343
DefiningRoles e 343
Change Control Parameters 344

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Contents
SettingUptheSystem 346
Selectionof Tools 346
Version Control Applications 347
TortoiseCVS . .o 348
Installer Creation Applications 349
Problem Reporting Applications 350
Creatingan SCM Plan i i e e e 351
UsingaTemplate 351
Coding Standards 353
ReviewingthePlan 353
Development Activities i 354
Auditing Program States 354
Build Activities 355
Program Files and Components 355
Controlling Development Domains 357
Baselined Versions and Releases 357
BranchingModels 359
Concepts 359
Architecting Branching 364
Branching and Version Control Practices 367
Promotion 369
Development 370
Quality ASSUrancettt 370
Beta 371
Release o 371
Management ssues 371
Individual Practices i 371
Test Coordination Issues oo, 374
Disaster Recovery Issues 374
Automated Builds 375
Installation e 375
ISToOl .. e 375
Creatinga Project 376
Adding aScript e 377
Compilingand Testing 377
ConcluSioN . .. e 379

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXi

XXii

Contents

Chapter 11

Evident Evil—The Artof Testing 381
Basicsof Testing i 381
Three CoNCePts . ..ot e et e 383
Formalized Testing 385
Approaches to Analysis i 387
General Domain 387
Application 388
Architectural e 388
Detail (Class)o vt e e 389
Maintenance e 389
The “V" Model 390
WaystoTest 391
Inspection e 391
Unitor Class Testingt 392
Integration 393
SyStem . . 394
Planning Activities 394
Project Test Plan e 395
Component/Class TestPlan 396
Integration Test Plan, 397
System TestPlan 398
Acceptance Test Plan 398
Organizing Test Planning Documents 399
Using Templates i e 399
IEEE 829 e 400
Test Case Template i 404
Test Report Templates i . 407
Tables for Testing i 410
Testing Activities e 413
Test Cases and Procedures 413
Converting Use Casesto Test Casesouuunn..n 414
Using Outlines i e 414
Test Suites 414
Black-Box Testing 415
White-Box Testingo 415

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 12

Contents
Assessing Risks o 419
Coverage 420
Complexity 421
Orthogonal Defect Categories 422
Impact ... e 425
Testing Roles e 427
CoNClUSION . . e 427
Numbers for Nabobs 429
Justifications for Collecting Metrics 430
Key Metricso 430
Information Sources 431
Metrical Terms 432
Whereto FindData e 433
Object-Oriented Product Data 433
Core Metrics for Projects and Processes 434
Benchmarking 436
Relationships 436
Regression 438
Terms of Regression for Line Graphs 439
Trend Lines 441
Pareto 442
Statistical Curves e 443
SIgMaA . 444
SIX SIgMa . .. e 444
PicturingData 446
Divisions of Statistics 450
Descriptive Statistics 450
Inferential Statistics 451
Statistical Basicso 453
SUMMING . ..t e e 453
Standard Deviation 460
Validity and Reliability 461
Models . .. 463
StaticModels 463
Dynamic Models 463

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXiii

XXiV Contents

The Rayleigh Approach 464
Rayleigh Applied 465
Ankh Metrics 466
Lines of Code and Stripes, 466
Requirements and Stripes, 467
Collaborative Complexity, 469
Function Points i 470
Conclusion e 472
Chapter 13 What People Do—Development Strategies 473
Starting Points e 473
Team Formation 474
Definition e 475
Working with Software Design 477
Setting Up Tools 477
SmartDraw 477
Documentation 479
CV S 480
Concept Formation 481
Requirements Ruminations 482
Formalizing Requirements 482
Working with Conceptual Tools 482
Designing Software i 485
Testingo 486
Project Planning e 487
Beginning Development 487
Design Again—Low Level, 488
Configuration Formalities 490
Coding Conventionscoiiiiinnnnnnnnne.. 491
Libraries and Resourcescoiuiiinninnnnn.. 492
Working with Specificationsand Plans 492
Requirements e 494
DESIgN . oo e 494
Project Plan e 496
Configuration Management and Version Control 498

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 14

Chapter 15

Contents

Applying Coding Conventions 499
Test Plan 502
Release Plan 502
Quality Assurance Plan i 503
Settling Disputest e 504
Reachingthe Goal i 505
AlphaandBeta 505
Gathering It Together 506
Reviewing the Project 507
ConcluSioN . .. e 508
Practice, Practice, Practice 511
Software Revision 511
Modifications 512
Scope and Complexity 513
Technical Symmetry 514
Gauging the Impact of Requirements 515
Linear Growth in Complexity 517
Determining the Scope of Revisions 518
Changesto Ankh 519
Optimization Candidates 519
General Risk Assessment oo i 520
Optimization Selections 521
Ranks of Difficulty and Priority 523
Evaluating Classes and Operations 524
Specifying Revisions 530
Use Case Confirmation i, 531
Configuring Revisions et 532
Designing Revisions s 532
Implementing Revisions 533
Testing Revisions i 534
ConclUSION . . e 536
TeamWork 539
Basic Tendencies of Teams ittt 539
When Teams Form 541
Formal Measures of Team Formation 544

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXV

XXVi Contents

How Team Numbers Are Determined 546
What Teams DOottt e e 546
When Teams Dissolve 547
Important Factors in Team Formation 547
Technical Fit 548
Emotional Fit e 548
Findinga Fit e 549
Formal DevelopmentRoles 550
Personal ProjectRoles 552
Combining Formal and PersonalRoles 554
Team Activities 555
Aligned Goals 556
Participating in the Information Flow 559
Review Strategiest 560
Buildinga Team e e 562
Managing Project Team Work i 565
Project Leadership i 565
Project Management Skills, 566
Means of Management 567
WV BSS .« ittt e 567
WBS Task Listso e 569
PERT Chartsot e e e 569
Gantt Charts 570
Why Projects Fail 571
ConclUSION . .o e 574
Chapter 16 Process Improvement cunt. 577
The Basics of Process Improvement 578
Quality .. o 579
Cyclesof Quality 580
Contrasting Approachest 581
IS0 o 582
ISOin General e 582

ISO 9000 Specifics ..o vi it e 583

ISO SUQQEStioNSttt 585

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 17

Contents
ThelSOand CMM e e 587
Means and Ends—Templates 589
[EEE Standard 730 e 589
SEl Key Process Area Template 594
TemplateResults i 595
CMM Background Information 596
The CMM, CMMI, and PSP 596
Levels of Maturity 597
Key Process Areas and Key Practices 600
The Continuous Model 602
Making Change Happen 605
Approaches to Improvement i 609
SEPG . e 609
Source of the Initial Process 610
Journals and Personalized Endeavors 612
ReVIEWS . . e 614
ConClUSION . . e 614
Release Planning and Management 617
Release Basicsttt e 617
Structuring Releases 618
Code Complete i i 619
Alpha . 625
Beta 628
ProductionReleases 631
Updateso 632
Numbering Products 632
Release o 634
VErSION . . 634
Update (or Upgrade) Level 635
Test Level ... 636
Tracking Information for Release Activities 636
Tracking Build Information 637
Tracking Release Information 639
Tracking Defects 641

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXVii

XXViii

Contents

Chapter 18

Making the Decision i 644
Summary DevelopmentData 644
The Release Manager, 644
Release Signoff 645

Establishing Software Support 646
Obtaining Information 646
Categories of Information 647
Reporting e 650
The Maintenance Processand Tiers 653

Conclusion e 656

Documentation—Learning How toLearn 659

The Concept of Information Management 660
Sharing Knowledge i 662
Overcoming Limitations 663

Learning Through Documentation 665
Pathways of Learning i, 665
Participation i e 670
Nondocumentation-Centered Information Management 671
Teaching Culture e 672

Technical Versus Customer Documentation 673

Different Approaches i 674
Journaling 674
Indexed Journaling 674
Content Management Systems 675
E-Mail Exchanges 676

Templateso e 676
What IsaTemplate? 677
Where to Find Templates 677
How to Use Templates 679

Document Maintenance 680
Tracking . ..o e 680
Numbering Systems and Baselines 681
Ownership Responsibilities 681

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 19

Contents

Document ReViews 682
Anticipating Reviews 683
Conducting Reviews 683
Team FOCUS e 684
Approaches to Storage and Display 685

Tools for Documentation i 685
Word Processingvvvin it e 685
Graphics e 686
Technical Drawingsand UML 686
Display . ..ot 686

Preventing Excesses i e 687
Using a Standard Process 687
Relating Documents to Each Other 687
Reducing Maintenance i 688
Keeping Only Essential Material 688

ConClUSION . .. e 688

Philosophy of Software Engineering

and Game Development, 691
The New Undertaking 691
Defining the Domain 692
Formal Engineering i 692
Software Engineering Areas of Knowledge 693
Science and Engineering 694
Complex Productsc.oiiiiiin i 695
Professional Licensing, 696
Why Licensing? e 697
Back aStepo 697
Practice, Not Licensing i iinnnn. 698
AChallenge 700
Professionals as Craftsmen and Artists 700
Inertia and Innovation 701
Finding Your Development Style 703
Craft, Engineering, and Style 703
Evolving Style 703

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXiX

XXX

Contents

Appendix A

Large Companies Versus Small Companies 705
Group Specialization 705
Project Orientationc. i 706
Working Within the Large Organizational Structure 706
Seeking Core Knowledge, 707

How to Learn e 708
Learning Paths 709
FindingaPlacetoLearn 713

Specialization 714
Methodology 714
Workable Methods 716

Growth Patterns 717
Working Metaphors 718
Taking It Seriously 719

Ethics ..o 720
The IEEE/ACM Code of Ethics 720
Applied Ethics 721
Social Implications 722

Satisfaction with Work 722
Workflows 723
Parallel Paths 724
Information and Publications 725

CoNCIUSION . . 727

Installationand Setupt 731

Viewing the Files 737

The Ankh Directory e 737
The Stripe Directories 738
The Bin Directory e 739
The Documentation Directory oo .. 739

Playingthe Game 740

Uninstall 740

Installing SmartDraw e 740

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Appendix B

Appendix C

Appendix D

Contents

Working with Files ias. 741
The Ankh Source Files 741
The SmartDraw Files 742
Obtaining TortoiseCVS e 743
SourceControlciiiiiiiii i 743
Locking and Simultaneous File Access 743
ReEPOSITOries 744
File Management i 744
Setting Up aRepository i 745
Adding Files 746
Checking Qut Fileso et 747
Updating Files e 748

Software Engineering and Game Design

Documentation i iiiaan. 751
LISt o 751
Ankh Game Design Document 752
Introduction e 753
Lead Game Line ... 753
Control 753
Unitsand Characters, 754
Classes . . oot 754
Characters e 755
Attributes, Skills, and Experience 755
New Characters 758
Level Dynamicsttt e 759
Level Discriptions 765
Level 1: Streets of Alexandria 766
Battles 768
RESOUICES ..o e 770
Ankh Software Requirements Specification 771
Description e 772
Perspective 772
Product Functions System Decomposition View 772
User Characteristicso 773

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXXi

XXXii

Contents

Appendix E

Constraints 773
Assumptions and Dependencies 774
External Resource Requirements 774
User Interface 774
Hardware Interface i, 774
Software Interface 774
Communications Interface 774
Functional Requirements Views 774
Primary List of Functional Requirements 775
Functional Requirements Component View 778
Use Case View of the Requirements 780
Design Constraintso i 780
Availability 780
SECUNIY . e 780
Maintainability 780
Other Requirements 780
USE CaSS « « v vttt e e e e 780
Ankh Software Design Specification 786
Purpose and Layout of the Document 786
Source Documentation L 786
CRC VWS . .o e 786
Requirements 787
USE CaSeS . . ittt e e e e 787
TOR Chart ..o e e 788
Glossary and Definitions, 788
Component Descriptionst 789
List of System Stripes 790
Stripe 1: Startof Game L. 790
Stripe 2.2: Floor Tiling o 798
Stripe 2.3: Mesh Placement 801
Stripe 2.4:Saveand Load 804
Sample CRCCardsoi ittt e e 807
RESOUKCES . ..ot ittt it it e e 811
Software Engineering Glossaries and Topics 811
Code Help e e 811

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Contents

Topical Sites e 812
Commercial e 812
History and Analysis i 813
ReVIEWS . o 814
GloSSary. . ..o oiii i e e 815
INdeXt e e e 821

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXXiii

XXXiV

INTRODUCTION

practices that are fostered by software engineering. It takes you through the major

phases of the software engineering lifecycle and introduces you to the subjects
named in the Software Engineering Body of Knowledge (SWEBOK). The development
process that this book documents started from a set of requirements. It guided the team
to consistently design and implement a game according to requirements. The team stayed
within budget and delivered on time.

This book is about how a small team of developers can build a computer game using

The game is called Ankh Adventure (or just Ankh). (See Figure 1.1.) The game provides a
3D graphics engine built with DirectX. Its design incorporates customizable levels and
characters. (It features map and character editors.) It provides save and replay options, a
particle engine, and MP3 music. The code for the game is extensive enough that you can
gain from it a sense of the complexity that characterizes games created by programmers
who are working in the game industry. On the other hand, the code is limited enough that
you can study it in detail. (The game consists of roughly 30,000 lines of code.)

As you read the book, you will see how the requirements for the game were laid out. The
effort started with a game design document. Using the game design document, the team
engineered a set of software requirements. To accomplish this, the team employed use
cases and other tools of analysis. After that, the team designed the game software. You will
be able to follow along through all of this activity. You can see how the team created the
configuration management plan from the design. You can see how the team created the
test plans by using the requirements and the design. (The artifacts—documents—that
resulted from these activities are on the CD.)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Introduction

EHEMY

Figure 1.1
The game stripes start simple and grow in complexity.

In addition, you can see how the team subjected the design to scrutiny to discover oppor-
tunities to use software design patterns. With the implementation effort, you can see how
the team refactored code to simplify and optimize it. With respect to processes and prac-
tices, you can read about how elements of the Capability Maturity Model (CMM) were
put to work, how the development team was organized, how reviews were conducted, how
templates were used, and how documentation was created.

Specific activities abound. One chapter covers the Unified Modeling Language (UML) in
a way that shows that UML is a practical, flexible tool. Another chapter investigates pro-
gramming using object-oriented programming practices. A chapter on testing explains
different approaches to testing and how to develop test plans. A chapter on metrics gives
you starter information on how to quantitatively assess games and their development.
Also included are chapters on managing the release of a game and planning and execut-
ing a revision.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXXV

XXXVi

Introduction

The code for the game is set up so that you can explore it without difficulty. The key to
this is that the code is set up in 19 stripes. A stripe is another name for a software module.
A software module is a collection of classes. Each stripe embodies a set of functionality
that is specified in the requirements. The stripes were developed sequentially. Stripe 1, for
example, sets up the basic Windows framework of the game. Stripe 2 adds GUI features.
By Stripe 4, you can see a character mesh. (See Figure 1.2.) By Stripe 9, the game offers
characters who are engaged in combat. When you get to Stripe 14, you are in a world of
multiple levels and all sorts of features.

PropsiWell.x
Props\Wood Door.x
CharactersiBeberu.chr
Characters\Conspicuot
CharactersiDead Soldie
Characters\Dumiak.chr,

REEENHET Y60 275

NS

b

Snap to grid

Back
To
Mo

4,

Figure 1.2
Editors allow you to customize game features.

Whether you are in a classroom or working on your own, one effective way to use the
stripes for learning is to study the difference between sequential stripes. Set up your pro-
ject with the lower of two stripes, and then add the code to develop your code until it
resembles the higher of the two stripes. Use the Design Description as a guide.

The installation program makes it easy for you to access all the code using Microsoft
Visual Studio. Each stripe is set up as a separate project. Just access the folder for the stripe

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Introduction xxxvii

and click on the Ankh.dsw or Ankh.sln file. (An appendix provides you with a little
startup help with Visual Studio if you need it.) The appropriate version of DirectX will be
installed for you, along with the Boost library and all the assets. Nothing that is already
installed on your computer will be disturbed.

The installation program allows you to install stripes selectively. This means that you can
adjust the complexity of the game to suit your curiosity. If you want to see just the basic
framework for a Windows application, you can install Stripe 1. If you want to see how the
characters are set up for combat, you can install Stripe 7. You can look up any of the
stripes in the Ankh Software Design Description, which is included on the CD. (An appen-
dix provides an excerpt of this document.) Read the use cases at the beginning of each
stripe design section to acquire a sense of what the stripe is designed to do. In addition to
the use case, the Description provides simplified UML diagrams to help you understand
how the code in each stripe works.

The installer program attempts to accommodate all your needs. (See Appendix A, “Instal-
lation and Setup,” for instructions.) You can install only the documentation if you prefer.
You can also install an executable for each stripe. Alternatively, you can install a project for
each stripe and compile it yourself. If you want to install only the game and the user’s
guide, that is an option, also. Regardless of what you want, the installation package sets
things up for you. Just insert the CD and follow the prompts.

The game has been created using C++, DirectX, Win32 functions, and the Boost library.
The game code starts from scratch and uses no MFC classes. Even the dialog boxes are
built from scratch. Around 25 percent of the code consists of comments to help you
understand how the code works. Object-oriented programming is the best approach to
most complex programming tasks, but structured programming can still be useful. (C++
is not a pure object- oriented programming language, and the game does not make a pure
application of it.)

Despite extensive discussion of programming, keep in mind that this book is not on how
to program using Windows components, C++, or DirectX. Nor is it about how to code a
game. It is about software engineering. As a result, this book does not require you to write
code. You don’t even need to study the game code on the CD. Still, it is hoped that you will
thoroughly investigate the code and perhaps begin tweaking it for your own purposes. An
enormous effort has been invested in making certain you can do so.

If you want to work with the main executable and perform design work, the game has a
variety of character classes. (See Figure 1.3.) You can customize characters and add levels.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

XXXViii

Introduction

Eﬂils aﬂd SoreE 1’
Meditation

Touch of Isis 1l2|
Taur.‘T'r of Ra ‘.IE

Sati-Fyiest of Osins
HP lI]lﬂDi

Figure 1.3
Fully implemented, the Ankh game provides a challenging subject of study.

You will find that this book is a toolbox. It preaches nothing and advocates no method-
ologies. This book provides a set of useful tools for software developers in any area,
including game software development professionals, game producers and designers, man-
agers, software quality assurance specialists, testers, writers, artists, and those who are
involved in education relating to computer science, software engineering, or game devel-
opment.

Creating a book with a scope as broad as this one necessarily requires that a great deal be
omitted. To compensate for the missing details, each chapter provides a list of texts that
you can consult to deepen your knowledge of the topics that this book discusses. The
books that are referred to represent accounts that practitioners have given of the work
they perform. When a reference to a college textbook is included, the textbook is one that
the authors have found useful in the industry.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

CHAPTER 1

GETTING INTO THE GAME

engineering. This book presents software engineering as a toolbox from which

developers can select the tools they need. A great deal of latitude characterizes both
what tools developers select and how they use them. Acquiring a clear understanding of the
tools available to you and how you can apply them enables you to refine your development
efforts. Examining these and other themes easily leads to many introductory topics:

3 nyone who develops software for games can benefit from knowledge of software

= Mixing engineering and art

m Software as a practice

m Software as a professional concern

= Approaches to learning how to design and engineer a product

® The development of Ankh and software engineering

m Strategies for making the best use of formalized engineering knowledge

® Learning from skills that you can apply anywhere

Software Engineering and Game Development

If you develop software for games, you can benefit tremendously if you acquire knowledge
of software engineering. Software engineering concerns everything that has to do with
software development. It can be defined informally as the study and practice of how to
improve software development. If you develop games, it is worthwhile to acquire knowl-
edge of software engineering. The following paragraphs explain why.

To start with, consider that game development sustains its own culture, and this culture
consists of much more than developing software. Any given game development project

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 1 = Getting into the Game

involves the efforts of many highly creative individuals who perform a wide variety of
work. Among these individuals are those who design games, create graphical assets, com-
pose music, and write dialogues. These are just a few of the many people who might be
involved in a game development effort.

It makes little sense to contend that those who do all these things should have any great
concerns about software engineering. Software engineering consists of a set of practices
that apply to the development of software. Although the software remains fundamental,
it forms only part of the picture.

Still, software engineering benefits everyone involved in a game development effort
because it allows software developers to identify and apply solid, proven practices to their
efforts. Their efforts address the needs of others. Consider, for example, a game designer.
This individual works long hours to define precisely the world of the game. This person
depends on the software developers to develop the game functionality so that the world
of the game can be realized. As the software developers commence their efforts to devel-
op this functionality, they should take care to understand fully what the game designer
requires before they begin to develop the software; otherwise, they stand little chance of
meeting the designer’s expectations.

Software engineering consists of a body of knowledge that guides developers as they
develop software. One recommendation that this body of knowledge offers to developers
is that they carefully gather and analyze the requirements for the software system they
have been asked to build. Another recommendation is that they create a software design
that thoroughly addresses the requirements. Among other recommendations is one that
developers test the system they develop to ensure that its design and implementation
exactly express the requirements.

If software developers follow such recommendations as they work with the game design-
er, they will appropriately address the needs of the designer. They will make good use of
the designer’s time, and they will have used established practices and processes. They also
will develop a product without redundancy and rework. Using software engineering prac-
tices, the software developers will know how to ask the right questions and how to make
the best use of the information they gather. Their efforts will make the best use of every-
one’s time.

Engineering

Software engineering is a formal discipline that is dedicated to enhancing the quality of
software development processes and the products that result from them. When a software
product possesses quality, it is, among other things, reliable, maintainable, and extensible.
A reliable software product is one that performs as specified and lacks defects. A main-
tainable software product is one that you can fix when it is defective. An extensible prod-

uct is one that enables you to extend its life by adding functionality.
TEAM LING - LIVe, Informative, Non-cost and cenuine !

Cottage Industries and Formalized Disciplines

When a software development process possesses
quality, it is, among other things, consciously
understood as an engineering process. When it is
consciously understood as an engineering process,
it is something you view as being open to continu- Engineering
ous improvement. In other words, like a software
product, you can fix a software development
process if it is defective, or you can modify or add

Software Development Process

to it as part of a continuous effort to improve it. Software Development Product

Continuously improving processes lies at the basis Figure 1.1

of how you continuously improve products. On the ¢ g\ 2re e;ngin eering involves a
other hand, seeking to continuously improve prod- dynamic of improvement between
ucts motivates you to seek new ways to improve product and process.

processes. Software engineering joins these two

activities in a continuous cycle. (See Figure 1.1.)

Cottage Industries and Formalized Disciplines

Chapter 19, “Philosophy of Software Engineering and Game Development,” relates ideas
about the extent to which market forces have transformed software game development
during its first decades of existence. What began as a cottage industry has become an
industry that large corporate operations currently dominate. Making games often involves
some of the most complex software development efforts to be found anywhere. You can-
not undertake such efforts without extensive planning. Furthermore, you cannot sustain
such efforts without attention to the processes that support them.

Software engineering is pervasive because developing entertainment software products
poses financial risks. Corporations face risks when they hire individuals who do not pos-
sess the appropriate professional qualifications. Corporations seek individuals who can
perform their work efficiently and effectively. Such efficiency and effectiveness ultimately
result from the application of disciplined approaches to work. This discipline results from
the application of engineering principles and practices to software development.

Such pronouncements ring of a type of authoritarianism that many programmers and
others who are involved in game development find disturbing. Given the romantic images
that many of the early game development histories present, the idea that game develop-
ment has become a realm of engineering expertise rather than heroic drive proves
discouraging.

The degree of discouragement depends on how you look at the big picture. The big pic-
ture certainly establishes that a few dozen game developers and publishers dominate the

TEAM LING - LIVe, Informative, Non-cost and cenuine !

3

Chapter 1 = Getting into the Game

industry. It dictates that game development often is characterized by production plan-
ning, budgeting negotiations, and large personnel management undertakings. Surviving
in this world is difficult. The competition is ruthless, and the odds of success are minimal.

However, outside the inner circle of prevailing corporate interests, many thousands of inde-
pendent game developers create games that they hope to sell to the mass market. The situ-
ation is analogous to some aspects of the music and film industries. Although a few distrib-
utors, studios, publishers, and artists occupy the center of the market and speak for most of
its revenues, on any day of any year, talented individuals form groups and work together to
create new products. Whether they form film production companies, bands, or game devel-
opment groups, those involved dream of success. They have every right to do so.

The stories that you hear from game developers differ in wonderful ways from the stories
that you sometimes hear when you talk to professionals in other areas of the software
industry. You often hear how people view software development as a kind of accounting
or factory activity governed by marketing and engineering dictates. To an extent, game
development has gone in that direction. On the other hand, for those who are interested
in becoming involved in game development, dreams of individualized or entrepreneurial
success dominate their thinking.

Keep in mind that regardless of how you decide to try to participate in the game industry—
as an entrepreneur or as an employed professional—if you proceed with your work in a
systematic, disciplined way, you will be able to perform more effectively and stand a strong
chance of success. Software engineering provides a set of tools that anyone who is involved
in software development can use. Whether the development effort involves a small band of
developers or a large corporation matters little.

Repetition and Perfection

Software engineering offers a toolbox that is open to anyone who wants to reach into it.
Whether you develop a game on your own or work with a few others, the tools that soft-
ware engineering offers can help you in the same way that they help a large group of peo-
ple who are working in a corporate context. The tools provide an immediate, flexible way
to formalize your efforts and render them more effective. On the other hand, because you
can use the tools of software engineering at will, you are not bound by them to surrender
your creativity or proceed with your efforts in a dry, formalized way.

Figure 1.2 provides a rough sketch of Sekhem, the avatar of Ankh. This book documents
how a team of developers developed Ankh. The game begins with a game design document
that the game’s designer produced. The game design document provides descriptions of
the world that Sekhem inhabits and the challenges that he faces. You must transform such
information into software requirements. In turn, you transform the requirements into a
software design. You then systematically implement the software according to the design

TEAM LING - LIVe, Informative, Non-cost and cenuine !

To Engineer Is. ..

path laid down in a software develop-
ment plan. With the implementation
effort guided by the software develop-
ment plan, the game takes shape. As
the game takes shape, you store and
manage the files and assets that com-
pose it according to a software config-
uration plan. To confirm that the
game is taking form according to
design and in conformity to its
requirements, you perform testing on
system, integration, and component
levels.

Software engineering releases many
potentials. One of the most salient
potentials involves freeing yourself, as
an individual or a member of a team,
from development activities that take
place without a strong sense of direc-

tion or purpose. Figure 1.2
.. . . The game involving Sekhem begins with a game
This is mostly what engineering has . gn

been about for at least the past 6,000

years. When the builders of the pyra-

mids went to work, they were doing so at the command of a ruling class that wanted them
to defy time and achieve immortality by piling up carved blocks in a systematic way. In
response to the challenge, nameless engineers over many centuries struggled with the minu-
tiae of metallurgy, geology, rope strengths, labor schedules, heat pressures, pillars, beams,
pikes, ramps, and all the rest. The labor went on. In time, the engineers learned to study their
failures and successes. They applied planning and discipline to their efforts. Reliability and
maintainability entered the picture. Engineering emerged as a discipline of labor.

You can read similar accounts of almost anything that enters into the history of engineer-
ing. Among these are galleons, clipper ships, steam ships, railway engines, skyscrapers,
telephones, hair pins, bridges, dolls, and pencils. Everything that you can build over time
becomes the object of engineering.

To Engineer Is...

Software engineering begins with the notion that it is important to learn from what you
do and to apply what you learn incrementally to perfect your capacity to do what you do.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 1 = Getting into the Game

The focus of almost any software engineering activity you care to name involves helping
those who perform such activities find ways to gather and retain information about what
they do so that they can improve their efforts with each iteration of development.

The scholar of technology, Jacques Ellul, contended that everything is eventually subordi-
nated to technique. Technique is a process of refinement that characterizes formalized
knowledge. Everyone knows how this works. You do something for the first time, such as
bake a cake. The first time is characterized by a lot of extra work. You pursue this path and
that. You make mistakes. The counter is strewn with flour and egg yoke. Your efforts result
in a sunken, undercooked product.

The next time around, things go a bit more smoothly. You have learned a few things. You
fold what you learn into creating a technique for doing what you do. The technique is a pro-
cedure, a tried way of doing things. Depending on your personal style of learning, your
approaches to technique are more or less regimented. Some people go by numbered lists and
measuring spoons. Others work from a tested sense of what comes next and what counts as
a teaspoonful of sugar. Whatever the approach, you learn from each iteration. Over time,
you eliminate the excess and redundancy of the first try. This is how technique works.

Technique means that you store knowledge about how you do things and then consciously
try to use this knowledge to improve how you do things. After a time, you begin to apply
technique even to the way that you go about storing knowledge. You refine the informa-
tion you store to specific categories:

= Time. You learn that some ways of doing things take longer than others. There is
something painful about doing things that take a long while to complete. Yes, some
things you want to last. But compare the experience of sharpening a pencil with a
penknife to using an electric pencil sharpener.

= Energy. Energy comes in different forms. Some energy is stored up, waiting for
use. Water resides in reservoirs. The energy is reserved, ready to generate electricity
or run a mill. When the energy is released, you use it either effectively or ineffec-
tively. You learn that when you use stored potentials, it is best to use them effec-
tively. Often, life offers no second chances.

m Efficiency. There are hard and easy ways to do things. If you are asked to write a
structured essay, you can write a stream-of-consciousness narrative and then take
days or weeks to rewrite and refine it into a structured essay. Or you can follow the
dictates of your early rhetoric teachers and write an outline. You use the outline to
guide and refine your thoughts as you write. With the outline in place, you might
still write a stream-of-consciousness narrative, but now the stream is like a river in
its course.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

The Path

= Reliability. A bridge builder builds a bridge in soft soil, and after time, the bridge
collapses. The builder learns that building a bridge that lasts requires study of the
rock beneath the prospective bridge. Reliability involves refining the view you have
of the conditions under which you work, the materials with which you work, and
the assumptions you make as you work. Such wisdom grows with time.

= Maintainability. Imperfection characterizes everything, so even when something is
built well, it possesses defects. However, if something is built well, even its defects
are accounted for. You can repair a well-built product easily. Consider something
as simple as changing a tire on a bicycle. You can anticipate a flat. To improve the
maintainability of the bicycle, bicycle designers make it easy for riders or mechan-
ics to change tires.

m Appropriateness. Every form of technology is a monstrosity unless it is created in
a context of utility. This was the lesson that Mary Shelley might have presented
when she wrote Frankenstein. It is hard to say, but if you read that story, you find
both a technological marvel and the marvel’s creator reduced to insanity. Technol-
ogy that lacks appropriateness generally follows the route of Frankenstein’s mon-
ster. Examples include leaded gasoline, DDT, weapons that kill with radiation, and
automobiles without safety features like seatbelts. You learn to sense when technol-
ogy is appropriate, and your sense of its appropriateness guides your work as an
engineer.

The previous list provides just a few of the possible items. Ultimately, such refinements of
the knowledge lead you to develop things in a self-conscious, self-aware way. If you devel-
op things in a self-aware way, technique begins to study itself. This is how engineering
works and how software engineering influences game development. Software engineering
allows you to improve the way you develop games as you develop them. It allows you to
put some distance between you and your work and to assess whether you can introduce
improvements in how you do things.

The Path

Consider for a moment the initial efforts involved in developing Ankh. The game design
document provides information about the game from the perspective of the game design-
er. The game designer seeks to create a game with a map editor, a character editor, sever-
al levels, and a complex world. This set of features allows the avatar, Sekhem, to have a
place in which to exist. (See Figure 1.3.)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 1 = Getting into the Game

Figure 1.3
Sekhem enters his world.

Software engineering activities kick into gear as soon as someone decides that providing
a world for an avatar involves creating a software program. The first step you take in this
direction is to engineer the requirements for the game. When you engineer requirements,
you perform your work effectively if you use tools you obtain from the software engi-
neering toolbox. One such tool is the Unified Modeling Language (UML). Another tool is
the use case. Chapter 3, “A Tutorial: UML and Object-Oriented Programming,” offers an
extended discussion of these tools.

Moving from a game design document to an engineering framework for realizing the
design calls for an abrupt reckoning with limitations. If engineering is about anything, it
is about limitations. To provide safe, reliable products, engineers face the sobering oblig-
ation that they must limit every engineered system in scope in one way or another. Every
beam that an engineer uses to construct a building can bear only so much weight.
Likewise, every algorithm that an engineer uses in the module of a software system can

TEAM LING - LIVe, Informative, Non-cost and cenuine !

The Path

perform poorly if it is implemented improperly. When you deter-
mine scope, you establish the general context in which the use and
design of every component of the product you are creating can be
visualized.

Many things govern scope, and chief among these is complexity.
The complexity of a software system results, in part, from the
raw number of logical nodes that the software system includes. A
logical node is a point at which a decision is made. But software
complexity also results from the way that developers design and
develop the software. Design affects the efficiency with which the
system moves information through its decision points. Development
determines the order in which components are created.

If developers do not begin with a clear understanding of the
requirements as they work with design and development con-
cerns, the situation that results is analogous to what might happen
if builders begin building a tower without first understanding how
high it is to reach. (See Figure 1.4.) Up to a point, the construction
effort might result in a reasonable structure. But then trouble is
likely to begin. For starters, without planning, the builders cannot Figure 1.4

know how strong the lower walls should be. Even before consider- Ad hoc development
ations of this type, the builders would need to reckon with the leads to problems.
depth and strength of the foundation.

Reworking the building after several stories have been constructed is not an impossibili-
ty, but certain problems result. For example, the cost of the building increases because
rework comes to characterize the effort. A change on the top story necessitates returning
to lower stories and rebuilding them. Each addition to the structure might require revi-
sion of the whole. No one knows, after a time, how much effort any given addition will
require. The effort becomes characterized by unpredictability and ad hoc work.

Consider a simple situation in which you create a game that features many characters. If
you work steadily forward from the requirements that the designer provides for the game,
you can comprehensively profile the character. Given this profile, you can create a design
for a general character type. In the world of object-oriented programming, this design is
expressed as a data type—a class. The design of the class anticipates repeated instances of
the class, and the result is that when it is time to replicate characters in the game, the effort
to do so is relatively effortless. A development schedule tells you to create the design after
you have created the requirements. The requirements tell you to design the class so that it
can accommodate many character instances. (See Figure 1.5.)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

9

10

Chapter 1 = Getting into the Game

Figure 1.5
Warriors populate the world, and a class accommodates their
proliferation.

Integrity

Integrity becomes evident when something can stand on its own and display consistency
with itself. When software developers do not engineer games or other software products
they develop, the products emerge from rework, inefficiency, and reactionary changes.
Such products ultimately lack integrity. One thing that results from lack of integrity is risk.

To achieve integrity and diminish risk, software engineering practices establish that you
should consider such issues as scope, architecture, planning, testing, and implementation:

Scope. Requirements establish the scope of a product. They express what the prod-
uct will provide to its users when it is completed.

Architecture. Architecture tells you how the software that composes the product
will be designed physically and logically.

Planning. Scope and design combined allow software developers to plan how they
will develop a product.

Testing. Software developers test their work to verify and validate it in the light of
requirements and quality objectives, such as performance, reliability, and main-
tainability.

Implementation. The development of the product, instead of being a point of
departure, becomes a manifestation of other activities.

Figure 1.6 illustrates how engineering combines scope, architecture, testing, implementa-
tion, and planning to form the basis of the development effort.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Answering Risk with Design

TTTTTTTTTTTeieeeen » Requirements designate

: i what the product should

: Scope i do. The collection of requirements
: i together allow you to understand
the scope of the product.

§ Architecture expresses : .]

! Architecture : the physical and logical :

; i design. e

Testing verifies and
validates the product as

. Planning designates it emerges from the

! the sequence of activities ~development process.

! i to be performed to achieve
iieieeee-....> the specified product.

Implementation is the work : :
of constructing the product i |mplementation !
within the scope set by] :
requirements, according to *---------- - mmennnaaaaaa
the design set by the architecture,

and in accordance with the plan of development.

Figure 1.6
Software engineering provides a context for implementation.

Answering Risk with Design

Philosophers contend that nature offers nothing free. Within the environment in which
software developers plan software construction efforts, each time they add a module to
the emerging system, the module both draws them nearer to the completion of the system
and presents the potential to disrupt fatally the development of the system. One particu-
larly hazardous assumption is that because you have created a design, you have created the
right design. Risk assessment can control this tendency.

Considerations of risk underlie practically everything that takes place during a develop-
ment effort guided by engineering practices. At the heart of risk analysis lies the question,
“What can go wrong?”

This question possesses importance because it requires that those who are involved in the
development effort consider the implications of every action they take. Whenever you add
a new component to a game, you make progress toward completing the game. At the same
time, everything you add to the game increases its complexity. The more complex the
game becomes, the more extensive the implications if you do something wrong.

The issues of design reveal how important it is to assess risk. When you design the soft-
ware for a game (Chapter 4, “Software Design—Much Ado About Something,” discusses
design in detail), the decisions you make relatively early in the project about how you
intend to architect the software have enormous bearing on the work that follows.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

11

Chapter 1 = Getting into the Game

If you create stripes that are too large, for

example, you can end up stalling your effort Plan

because you need to break a large stripe into _

smaller ones before you can simplify it Y ggtrésnttrigft"’e
. .]

enough to be able to complete it. If the Assess Risk

stripe is too small, you end up preparing Bgtsetgltji(;ﬁlve

testing material in a manner that is not cost v

effective. (See Figure 1.7.) Develop

Developing a world for Sekhem involved
anticipating the risks posed whenever fea-
tures that characterized the world were
added to the system. Figure 1.8 illustrates a
setting from Ankh. This view of the game
became possible only after the implementation of thousands of lines of code. The mesh-
es, the tile floor, the Al the character dialogues, and the lighting each represent the suc-
cessful completion of a stripe. The design anticipated each stripe, but despite the victory
that the completion of each stripe brought, had any one stripe failed to integrate with the
whole, the development of the game might have been delayed so seriously through rework
that the game could not have been completed on time. (See Figure 1.8.)

Figure 1.7
Each addition contributes risk.

Figure 1.8
A complex scene involves increased complexity and risk.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

To reduce risk, the team created a
design that stipulated that the game
should be developed in 14 separate
stripes. The team made a strong effort
to limit the size of each stripe so that it
could redesign a stripe if it proved too
difficult to implement. This approach
to development, which is based on
increments and iterations in the devel-
opment process, limits the develop-
ment activity to a selected set of
sequenced problems. The functionality
that each stripe includes constitutes a
subset of the whole. The overall com-
plexity of the system decreases because
it is broken into such subsets. (See
Figure 1.9.)

Game Design and Software Design

Pro

= Meshes—rs

! Transformation — -
En‘é'gﬁm ~ Wwindow

. Command —>
" “window

Figure 1.9

The design provides an approach to understanding
the system. It breaks the whole into a set of prob-
lems that you can solve in the best possible
sequence.

Game Design and Software Design

It is important to distinguish between
Figure 1.10 provides a summary of the

game creative design and game software design.
differences. The development effort behind Ankh

began with a set of technical requirements drawn from a game design document.
(Chapter 2, “Requirements—Getting the Picture,” discusses requirements engineering in
detail.) The game design document provides information about the game as an artistic
entity. The requirements that are drawn from this document constitute the first step in
transforming the vision of the game into a technical specification.

...................................

Game Creative Design

: Game Creative :
i (Production) Design Document ;

.
...................................

Analogous to a production
plan for a film.
Provides the artistic vision

...................................

Game Software Design

Game Software :
Design Description
Moves forward from the
mandate that the production
plan offers.

behind the game. Reduces the features of
Implies that software will be the game to a set of software
developed. requirements and says how
the requirements will be
implemented.
Figure 1.10

Technical and artistic design efforts underlie a game development effort.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

13

14

Chapter 1 = Getting into the Game

Using the software requirements specification, you can create the software design docu-
ment, which provides information about the game as a software system. (Appendix D,
“Software Engineering and Game Design Documentation,” provides excerpts from the
game design and the software design documents.) When the development team conclud-
ed its requirements effort, it had a list of approximately 70 requirements. Most of these
were functional requirements—requirements that would necessitate programming. The
raw number was not enough to establish fully the scope of the software effort, however.
To reach this goal, it was necessary to create the software design specification.

Design and Development
The Ankh development effort unfolded as a series of limited objectives that were focused
on stripes defined during the software design phase of the project. The design of these
stripes involved high-level and low-level activities. At the high level, the team’s primary
effort focused on determining how to divide the functionality of the system to make
implementation possible in the most risk-free manner. The team documented the divi-
sion of the effort into stripes in the software design description. The description provid-
ed the following list of stripes:

Stripe 1—Opening, Requirements 8, 14, 15, 16, 17, 18, 23, 28, 38, 46, 57

Stripe 2.1—GUI Objects, Requirements 18, 52

Stripe 2.2—Floor Tiling, Requirement 43

Stripe 2.3—Mesh Placement, Requirements 13, 43

Stripe 2.4—Save and Load, Requirement 4

Stripe 3.1—Navigate Alexandria, Requirement 13, 14, 15, 16, 17, 36, 61

Stripe 3.2—Sound, Requirements 29, 30, 31, 32, 33

Stripe 4—Character Editor, Requirements 18, 19, 20, 21, 22, 35, 44

Stripe 5—Unit Physics, Requirements 13, 14, 15, 16, 17, 35, 41, 42, 45, 47, 48, 64

Stripe 6—Inventory Items, Requirements 40, 49, 55

Stripe 7—Combat, Requirements 54, 56

Stripe 8—Acquire Skills, Requirements 20, 34, 47, 55, 56

Stripe 9—Acquire Weapon, Requirements 14, 15, 16, 17, 40, 49

Stripe 10—View Statistics, Requirements 14, 15, 16, 17, 18, 19, 20, 21

Stripe 11—AI, Requirements 24, 25, 26, 37

Stripe 12—Remaining Levels, Requirement 27

Stripe 13—Saving and Loading, Requirements 1, 2, 3,4, 5,6, 7, 8,9, 10, 11, 12

Stripe 14—Options, Requirement 39

Stripe 15—Revisions

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Design and Development

All of the development activity that
took place during the Ankh project
followed from this list. This list
provided, for instance, structural
divisions that were replicated in the
configuration and testing plans. It
also established the basis of the work
breakdown structure in the project
plan. As for the implementation
effort, team members worked wholly
within the contexts that the stripes
provided. Although members of the
team might refer at times to the total
size of the game, most of the time, Figure 1.11

talk centered on the size and charac- A combat scene and a dialog box represent two stripes.
teristics of the current stripe. (See

Figure 1.11.)

Each stripe accounted for one or more requirements. To talk about how much of the game
had been completed, you counted the number of stripes and the number of requirements.
You could say, for example, that 60 percent of the code had been written, but 50 percent
of the requirements had been met.

Figure 1.12 shows a UML package diagram. The Ankh team used package diagrams to rep-
resent stripes that were configured to form the system. Each of the package folders repre-
sented a set of classes compiled to provide a given level of functionality to the system. In
some instances, one stripe would be heavily dependent on another. In others, the depen-
dencies would not be so direct. Such independence did not necessarily represent irre-
sponsible coupling of classes. (Chapter 7, “P Is for Pattern,” discusses class coupling, as
does Chapter 6, “Object-Oriented Fantasies and Realities.”) Excessive coupling of classes
occurs when one class includes objects of another class in a random, messy way. If you
create an elegant design, you can plan for dependencies so that you decrease coupling and
reduce the risks it introduces.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

15

16

Chapter 1

m Getting into the Game

Stripe 1-Opening ~

Stripe 2.3—
Mesh Placement

Stripe 2.1—
GUI Objects

00.01.01.000 00.46.01.000 00.02.01.000
T T T
' ' '
' ' '
L PEEE T B . '
] ']
] L]
'
Stripe 2.4— Stripe 2.2— ' . _
Save and Load \ Floor Tiling \ H Stripe 3.2-Sound \
'
:
'
00.05.01.000 00.03.01.000 T = 00.07.01.000
'
'
'
'
:
............. feesesccussscsssssscsssasanaanang
i : i :
: : : :
: : : :
Stripe 6— Stripe 8— H Stripe 4— Stripe 5—
Inventory Items Acquire Skills ! Character Editor Unit Physics
'
:
00.10.01.000 f======1 00.12.01.000 E 00.08.01.000 00.09.01.000
'
'
: :
H '
H '
' ' e e memmmmmsemcamssssmmmssseme———————

Stripe 7—Combat ~

00.11.01.000

Stripe 11-Al ~

Stripe 9—
Acquire Weapon

Stripe 10—
View Statistics

00.15.01.000

00.13.01.000

00.14.01.000

Stripe 12—
Remaining Levels

Stripe 13—
Saving and Loading

Stripe 1 4—Opl\ons~

00.16.01.000

00.17.01.000

00.18.01.000

Figure 1.12

The game consists of a set of stripes that encapsulate design features and minimize development risks.

Class Design and Implementation

The Ankh software architecture includes approximately 60 C++ classes. In addition to
these, the software uses components from the Boost and Microsoft DirectX libraries and
a library of global operations. The Ankh team used Class-Responsibility-Collaboration
(CRC) cards for class design efforts. The team employed them in conjunction with a Task-
Object-Remarks (TOR) table to investigate relationships between proposed classes. As the

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Refactoring and Patterns

team investigated these relationships, it was able to discern more clearly the essential class-
es. To track this activity, you can access the requirements specification and the software
design description on the CD or consult the appendixes. (Chapter 13, “What People Do—
Development Strategies,” provides a detailed view of the general approach to development.)

Before each implementation effort, the team had to create low-level stripe specifications.
The team used several UML tools, including UML sequence, collaboration, and class dia-
grams. By exploring the ways that objects communicate with each other, the team could
anticipate the difficulties and problems that each stripe posed.

With each cycle of development, stripes tended to increase in size. The sizes of the stripes
tended to increase in relation to the responsibilities that the design laid out for them. In
this way, the design and the development schedule worked together to confine the growth
of the complexity of the game software. In addition, each iteration of the development
effort afforded opportunities to assess development risks. (See Chapter 9, “Iterating
Design” for the techniques to control the growth of complexity.)

Refactoring and Patterns

The development effort involved using software design patterns as a way to bolster the
design and development efforts. You can find extensive discussion of the approach used
in Chapter 7; alternatively, class diagrams in the software design description provide a
basis on which you can proceed with your own analysis.

As the discussion in many chapters of this book emphasizes, patterns and refactoring pro-
vide effective ways to approach incrementally improving software design.

Consider what happens when you program. One approach involves starting out and
exploring possible solutions by seeking and solving problems as they emerge. This
approach presents drawbacks because it proceeds in a random fashion and lacks a gener-
alized, guiding perspective. A more refined approach involves exerting a strong effort to
solve problems conceptually before the implementation effort begins. This approach pos-
sesses great merit, because it allows developers to proceed with a generalized view of the
system and to make changes in the design without worrying about features that are imple-
mented already.

On the other hand, consider what happens if you rigidly conform to a development model
that requires everything to be designed at the start of the project. If you follow this model,
the implementation of the design takes place without allowing questions to be asked. Such
an approach effectively bars developers from improving the design by applying lessons
learned during the development effort.

Software engineering studies indicate that the more time you spend on design, the better.
One reason for this is that when you explore problems during implementation, you

TEAM LING - LIVe, Informative, Non-cost and cenuine !

17

18

Chapter 1 = Getting into the Game

struggle against the tendency to accept as good enough whatever you happened to have
programmed. If the program works, it seems to be good enough. This is often not the case.

But then just because implementation without design poses risks does not mean that
development should have no impact on design. Implementation almost always provides
valuable insights into the weaknesses of the design. Having no latitude to change design
during the implementation effort can force developers into the untenable position of
implementing a solution that their efforts have shown to be inferior.

The Ankh development effort provided two contexts for design assessment. The first was
at the beginning of the project, when the team established the scope and architecture of
the product. The context of the second stage of design assessment unfolded during the
implementation phase. The team reviewed each stripe in terms of the lessons learned dur-
ing the development effort. The team could make adjustments to the design prior to the
commencement of the implementation effort. (See Figure 1.13.)

Planning :
—_—

Implementation
Product requirements
and design are developed
at the start of the project.

Design

Design During implementation,
each stripe is assessed
in terms of the overall

design.
Implementation Stripe

Design

Implementation Stripe

N

Figure 1.13
Phases of design reduce risk.

One assumption guiding the Ankh development effort was that the older (waterfall) mod-
els of development did not provide the best approach to game development. Game devel-
opment requires design flexibility so that the team can incorporate the lessons learned
during the development effort into a continuous effort of quality improvement.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Development and Testing

Development and Testing

The approach that this book takes to testing involves formalized procedures. To formalize
your testing effort, you can use test plans. For the Ankh effort, the team developed several
test plans. You can find the test plans on the CD in the form of Microsoft Word documents.
In one way or another, the test plans use procedures and test criteria that are presented in
IEEE standard 829. The development of test plans is discussed in Chapter 11, “Evident
Evil—The Art of Testing.”

One thing that the testing effort for Ankh emphasizes is that you can benefit extensively if
you employ use cases. Among other things, use cases provide a ready way to accumulate
information in one context and transfer it to another. For example, use cases help you to
formulate scenarios with which to understand requirements. At the same time, writing
requirements use cases allows you to accumulate information with which to develop
scripts for testing efforts.

Behavioral (white-box) testing provides an excellent context in which to establish models
for comprehensive test planning. If you establish a development effort based on use cases,
your effort begins with use cases that explore requirements. You can then employ these
uses cases to develop test cases. This is a patterned approach to testing that you can intro-
duce into any development effort.

Requirements generate
the design of the soft-
ware, and the design
generates the general
testing divisions. The
design divisions are
expressed best in use
cases for integration
testing. Figure 1.14
provides a truncated

Use Case Name: Disable Sounds

Requirement(s) Explored: 33, 39

Player (Actor) Context (Role): Player

Precondition(s): Game is running.

Trigger(s): Player opens Options dialog box.

example of an integra-
tion use case, this one
for Stripe 14.

Although extensive
work is necessary to
break the information
that a use case pro-
vides into tables and
scripts that contain
specific directions for
testing, use cases still

Main Course of Action:
1. Player unchecks the Enable Sounds check box.
2. Sounds no longer play.

Alternate Course(s) of Action:
1a. Player does not uncheck the box.

Exceptional Course(s) of Action:
2a. Sounds continue to play.

Figure 1.14
Use cases tie everything together.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

19

20

Chapter 1 = Getting into the Game

can guide the entire game software testing effort. The value of creating use cases for game
development efforts becomes especially clear when you consider that with highly inte-
grated team development efforts (efforts in which a high degree of communication occurs
between programmers and graphical designers), some of the most original parts of the
game arise after the initial design has been completed. During the various passages of
implementation, the features that achieve visibility with each new build of the game
empower the designers of the game to grasp new potentials for enhancement.

Use cases ensure that potentials for enhancement remain visible to the whole develop-
ment team throughout the development project. They also prohibit the team from
becoming too immersed in details. Likewise, because use cases are developed with specif-
ic references to the requirements, they drive the project from start to finish and provide a
clear context for regulating things like feature creep and goldplating (activities that can
seriously endanger the development effort).

Although they bind the requirements to the design and then the design to test plans, use
cases remain a flexible medium for information exchange in all areas of development.
Figure 1.15 provides an overview of the relationships that use cases facilitate during the
overall development effort.

P?crjec)iiti:\t/i%/n U[s): Sc'gag e [T P ro-tl:-gztu re/
Design Case
) Test
____________ Requirement| o r]
Use Case Proggtsjgre/
. Test
____________ Requirement| __ ..ot
Use Case : Proct::gggre/
q . Test
___________ Requirement| _________ i]
Use Case : Prog:ggre/
System
Use Case
Figure 1.15

Game development efforts that are characterized by highly integrated teams
can benefit from use cases.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Learning and Capabilities

Code Documentation

An attempt has been made to provide roughly one line of documentation for every four
lines of code to help you understand why and how operations and classes have been
implemented. The documentation in the code allows you to study the specific aspects of
how classes and operations have been implemented. On the other hand, understanding
the design and architecture of the code requires a high-level view. Generally, you benefit
if you begin with a high-level understanding of a system before you begin examining the
code in specific files. That’s because the overall flow of design as introduced in this book
is from the large to the small.

Learning and Capabilities

Software engineering prescribes no fixed set of procedures or methodologies for creating
software. Still, many organizations and individuals present procedures and methodologies
as embodying the best approaches to software engineering. As anticipated by the model
Jacques Ellul established for technique, there are even organizations and individuals who
advocate rejecting or revolting against procedures and methodologies. Regardless of how
you might be inclined to view questions concerning methodologies or procedures, the fact
remains that software engineering provides you with tools you can use to refine your
development practices continuously.

Software engineering can be characterized as a kind of contemporary historical study.
People who perform such work shape processes and practices so that they can be
improved. In this light, improvement is based on the assumption that you perform a given
activity or a set of activities over and over. To the extent that an individual or organiza-
tion can say that it has documented and can repeat its development activities, it possess-
es development capabilities. The Software Engineering Institute captured this concept and
embodied it in the Capability Maturity Model (CMM). Chapter 16, “Process
Improvement” discusses this and other maturity models in detail.

Incremented iteration provides the basic approach to developing capabilities. If you recall
the general discussion presented previously of how technique involves refining the process
of creating something, it becomes clear that developing capabilities through iterations
extends the notion of technique.

Formalized development of capabilities involves understating practices, processes, and
procedures. Consider the following:

= Documenting practices. When you document a process, your actions can be as
simple as writing a numbered list. In fact, in most contexts, this is the best begin-
ning. When you write a numbered list to document what you do, consider what
happens. First, you establish a benchmark for evaluation. You can ask yourself
whether you have forgotten anything. You can evaluate what you have documented

TEAM LING - LIVe, Informative, Non-cost and cenuine !

21

22

Chapter 1 = Getting into the Game

and add things you have forgotten. You can elaborate on the items that you have
listed, making it possible to explore the specific tasks that each step entails. Add to
this that you can copy the list and distribute it to others; this way, others can bene-
fit from what you have recorded and possibly provide valuable insights concerning
their own experiences with your practices.

Following documented practices and procedures. A practice differs from a proce-
dure. A procedure is a fixed way to do things. A practice is just a way to do things.
It is probably not right to dictate procedures to developers, but at times procedures
can prove essential. Consider a situation in which you are working to support your
customers. The service manager has put in place procedures for responding to cus-
tomer complaints. The procedures require you to follow specific guidelines when
you meet, acquire information from, and respond to customers. If you follow the
procedures, you have a guide to what is essential. You do not need to put your own
feelings on the line. You can approach the situation objectively.

Collecting data. Experienced professionals can do at least one thing better than
novices. They can estimate how long they will require to perform a given task.
They can do this because they have repeatedly gauged their efforts over time and
have an empirical basis on which to estimate the effort involved in completing
tasks. If you ask experienced programmers how long they think a class with x
number of operations will require to program, the answers will be based on prior
experiences with such work. Collecting data about such experiences can take place
in various ways. For an individual developer, the best approach is to use a log. You
can automate much of this activity on an organizational level.

Review. Reviews are ways to evaluate practices and procedures formally. If you
have made a list of things you do when you perform a given task, you can review
this list either on your own or with others. Review allows you to assess the list
from different points in time. Note that a difference of time creates a difference of
perspective. What applies to differences of time also accounts for the value of
group reviews. Group reviews allow you to expose something that you have done
on your own to the perspectives that others provide.

Chapter 15, “Team Work,” discusses the value of reviews in relation to teamwork. Reviews
also relate to documentation, generally, because setting up a review requires that you create
a body of information for review. Chapter 18, “Documentation—Learning How to Learn,”
provides specific information on how to gather and document development activities.

A template provides an especially useful tool for documentation. It furnishes you with a
guide that consists of a set of questions that direct your attention to essentials. A template
establishes a scope of inquiry or activity. You can use a template to create a context for
communicating about specific development efforts. A template does not prescribe how to
gather or organize information. Instead, it only suggests.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

The Industry

Maintenance and Revision

A successful software product has a lifetime that extends years or decades beyond its point
of release. Software engineering studies indicate that developing a software product
accounts for about one-third of its total budget. The maintenance phase of its life
accounts for the rest.

The way that you conduct the release process can be instrumental in reducing the expense
involved in maintaining a software product. Releasing a software product consists of gath-
ering together the parts of the product that are slated for release, but it also involves eval-
uating the state of the product as it nears release to ensure that it is ready for distribution.
In addition, release management involves preparing the organization for response to the
information that the product creates after its release. The most important such informa-
tion concerns the defects that customers encounter.

As Chapter 17, “Release Planning and Management,” discusses, alpha and beta tests can
provide solid information on whether a product is ready for general release. Likewise,
after a product has been made available for general release, a problem-tracking system can
ensure that when customers report defects, developers can respond to the reports in an
expeditious, effective way.

Measurement

Chapter 12, “Numbers for Nabobs,” discusses the basics of collecting numerical data.
Metrics constitute one of the most important aspects of software development because
companies increasingly encounter economic pressures that they can address only if they
have data that allows them to assess their productivity quantitatively. In addition to the
big picture, however, is a small one, the picture that includes the work of the individual
developer. Chapter 16 discusses how personalized logs help you collect quantitative data
on your own activities. The most likely scenario for such data collection involves tracking
the durations and efforts that are involved in given tasks. Among such information is how
long it takes you to complete a given task (effort) or how many lines of code you can write
in a day (productivity). As pointed out previously, collecting and assessing such informa-
tion helps you to mature as a developer.

Quantitative information forms the foundation of scientific experimentation. It is the
bedrock of positive knowledge. When quantitative data applies to a specific industrial
model, it becomes metrics. Key metrics in software engineering are product size, produc-
tivity, effort, duration, and reliability. Many other metrics apply, also.

The Industry

As it has evolved, the game software industry, like every other industry, has tended to fos-

ter greater specialization. Early on, programmers dominated the game development
TEAM LING - LIVe, Informative, Non-cost and cenuine !

23

24

Chapter 1 = Getting into the Game

effort. As the industry has matured, however, programming, although still essential, has
become subordinated to production management. In the corporate settings that current-
ly dominate the industry, programmers usually are not the principal developers of games.
Instead, they are treated as “resources” hired by producers to implement the software that
supports game designs. Game designers create games. Programmers develop the tools
with which to create games.

One result is that some programmers have exited the game production side of the indus-
try. Rather than founding game studios, they start software companies that develop soft-
ware to create games. Among these are companies specializing in engines, algorithms for
collision detection, audio production, scripting, testing, and other things. Figure 1.16
summarizes the situation.

" .’ . ‘| '¢..~"’, ~e=? .
o . . p/ Aol
F Audio & . s Scripting &
- [} E i [S -
b ngines e
cmaemmmadtT Thems - : :>=3D C ts <
JPCT TN . “ . omponents <
1 ‘ 1 S - & A 1 d
: . y R It P 5 Yoo o
-~ Modeling <. : ’ ' S LA
|‘_ -y 4 "~ . e Ptas «" H
- ’ =a Y - 1]
eees.__eese 70 Game Production < Tteel, e
Rl - " PRaEE ;‘ H
-- b ' e % ' PR
. Sean LT ”» ’ .’ .7 e --."'--'-. -t Semy
/"\"— ~.=’ .'I,— Shaeth "' .- :,__a '¢'," .», ‘I
' ' Semm .- 0 b C ” . 3
A . ; ollision <
] imulation ¢ ; S Detection :
- -=""s .
Sea ' ' e Laett a. A
“'-‘\ »"‘~._’~-—' \~ - " .»” _______ o" ‘~".~~.-."’~.-" -
Semeal et - g
- T e
" l" ~" ‘I
;~ Testing Tools < -* Graphical -
. ; \._.. Applications :
S ~-
“‘“‘~__."‘*-" ’~.—‘~. —"“~-—‘~__o

Figure 1.16
Specialized products increasingly characterize the game industry.

Specialization tends to atomize people. On the other hand, a common or core set of skills
and practices can counteract the tendencies of specialization. If your interest is in work-
ing as a software developer in the game industry, you probably stand the best chance or
finding a place if you can extend your skills through generalized software engineering
knowledge. One guide to the core knowledge of software engineering is the Software
Engineering Body of Knowledge (SWEBOK). As Chapter 19 discusses, although the
SWEBOK was developed to facilitate professionalism, it can serve as a ready source of
information for those seeking to pursue software development as a craft. It is more or less
a list of the bins you can find in a good software development toolbox. Figure 1.17 pro-
vides a high-level view of the types of work that the SWEBOK includes.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Profession and Craft

Profession/
Craft Employment Tools

Process
Metrics O O
O O Maintenance
Quality Assurance O A -

. -~

O Management
; Core :
Requirements . Knowledge ;

“ Testing

.......

Figure 1.17
Core skills ensure increased success in a competitive industry.

Profession and Craft

This book takes no strict line on whether you should seek certification as a software pro-
fessional. Generally, you can make a strong argument in either direction. On the one
hand, most of the visible game software developers do not possess professional certifica-
tion as either game developers or software engineers. On the other hand, the type of
understanding that one acquires through the study of software engineering might elimi-
nate many of the situations in which developers undermine their own efforts by failing to
address elementary engineering issues.

This book provides information on solid development practices. Despite enormous push-
es in recent years to shape software engineering into a profession, it remains part profes-
sion, part craft. Engineering that is grounded in science tends to be self-critical and ori-
ented toward quantification of knowledge. Engineering that is grounded in craft tends to
be oriented toward tradition and best practices. Both perspectives on engineering provide
valuable insights.

Large corporations now dominate the game development industry. They are in a position
to limit or confine employment specifications and opportunities for game developers to
the point that only a highly qualified elite can expect to obtain such jobs.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

25

26

Chapter 1 = Getting into the Game

On the other hand, other forces are at work, forces that are represented in part in the film
industry through such efforts as those of Robert Redford and Michael Moore. These
efforts are characterized by individuals who are largely self-taught and self-made. Such
individuals seek independent roles in which to create products usually spoken for by mas-
sive corporate efforts. Their successes serve as inspiration to continue to maintain open,
egalitarian access to the body of knowledge and set of practices that given movements seek
to make the exclusive property of certified professionals.

Conclusion

This chapter has provided a general perspective from which you can proceed as you read
this book. This book discusses software engineering both generally and in relation to the
development required for Ankh.

Software engineers seek to foster the development of tested and reliable development
practices and products. The body of knowledge that constitutes software engineering
extends far and wide, but at the core lies the notion that you can gather information about
what you do and use it to refine what you do on an iterative, incremental basis. There is
no mystery to this, and the approach to developing products does not require an exten-
sive, expensive education that establishes one as a “certified professional.” Instead, it
requires only a proper attention to science, detail, tradition, and craft. It is a toolbox open
to anyone.

Following are a few books that provide more information on the topics touched on in
this chapter:

Brooks, Frederick P., Jr. The Mythical Man-Month. Boston: Addison-Wesley, 1995.

Demarco, Tom and Timothy Lister. Peopleware: Productive Projects and Teams. New York:
Dorset House, 1987.

Ellul, Jacques. The Technological Society. Trans. John Wilkinson. New York: Random
House, 1964.

Humphrey, Watts S. Introduction to the Personal Software Process. SEI Series in Software
Engineering. Boston: Addison-Wesley, 1997.

Petroski, Henry. To Engineer Is Human: The Role of Failure in Successful Design. New York:
Random House, 1992.

Pirsig, Robert M. Zen and the Art of Motorcycle Maintenance. New York: Bantam
Books, 1974.

Shumacher, E. E. Good Work. New York: Harper & Row, 1979.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

CHAPTER 2

REQUIREMENTS—GETTING
THE PICTURE

his chapter shows you how to start a software engineering project. The chapter is

laid out in two parts. The first part gives you a general view of the concepts and

tools. The second part, starting with “Engineering Requirements,” guides you
through specific tasks. At the start of the project, you establish the project scope. When
you know the scope, you can determine precisely what you are expected to develop. You
designate what you are expected to develop by creating a list of requirements. The require-
ments list specifically identifies the functionality that lies within the scope you have estab-
lished. To develop a list of requirements, you use a number of techniques and tools to
ensure that your requirements are complete, accurate, verifiable, and worded so that
developers can easily understand them. The result of this activity is the contents of a sin-
gle document, called a software requirements specification. Along the way, you also create
use cases and a traceability matrix; these become part of the requirements specification. In
addition, you begin work on yet another major document, a test plan. A rough sketch of
the chapter topics is as follows:

» Identify what counts as a software requirement.

m Establish criteria for making sense of and writing requirements.

m Determine ways to collect or discover requirements.

= Explore how to employ uses cases to refine and analyze requirements.
= Find techniques to confirm that requirements are complete.

m Verify the accuracy of the requirements.

® Trace changes to the requirements.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

27

28

Chapter 2 = Requirements—Getting the Picture

Essential Notions

Requirements mark the starting place of the lifecycle of any software engineering project.
Gathering requirements is the first concerted activity you engage in as a software engineer
assigned to a development project. The reason for this is that the software project you
intend to develop must first be defined as an engineering problem. You engineer require-
ments so that you can engineer a product. The next few sections explore what require-
ments are and how engineering processes can ensure that they are properly developed.

What Are Requirements?

A requirement is a concisely worded statement that establishes how the software you want
to create will behave when it’s complete. Sometimes software engineers use shall to refer
to the relationship that a requirement establishes with the behavior of a proposed system.
In other words, after you have implemented a requirement, the system shall behave in
accordance to the conditions that the requirement establishes.

note

Shall might sound a little medieval these days, but engineers still use it. It serves as a kind of order
or promise that the developers will construct the system as described.

During the software development effort, you implement two types of requirements.
One type is known as a functional requirement. A functional requirement addresses the
operations that the system performs. The other type of requirement is known as a nonfunc-
tional requirement. The behavior of the system does not usually manifest a nonfunctional
requirement. Instead, a nonfunctional requirement applies to the standards or qualities of
performance that constrain the design or operations of the system. For example, if someone
says that the splash screen shall be appealing to the user, the requirement falls under the
nonfunctional heading. On the other hand, if someone says that the system shall provide a
splash screen, then the requirement falls under the functional heading.

Whether they are functional or nonfunctional, a somewhat overworked point about
requirements is that you should not express them in the language of implementation.
Implementation is the activity of building the software. Requirements specify the objec-
tives of implementation (what), not the implementation itself (how). When you address
the functionality of the system without reference to implementation, you address the sys-
tem from an external or user-oriented perspective.

To provide an example of the language of implementation, suppose that you say, “The
user shall click a dialog button to open a new window.” The problem is that “dialog” and
“window” echo the language of implementation. Instead, you should say something along
the lines of “After the user selects the next level option, the next level appears.” Granted,

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Essential Notions

this sounds vague, but this second formulation avoids making the requirement into a pre-
mature design decision. The second formulation restricts the wording so that you hear
only about what the system does. Determining how this will happen comes later.

Where Do Requirements Originate?

As a software engineer, you might find that you do not create the idea of the game you
build. Instead, you build the software that provides the functionality that supports the
idea. As an engineer, you translate features into functionality. To discover what you are to
support, you begin the requirements engineering effort.

When you engineer requirements, you spend a great deal of time—sometimes weeks or
months—eliciting information about the software system you intend to build. In a setting
in which games result from business, design, and marketing plans, the game is likely to be
something you find described in documents that others create. The people who create
these documents are game designers. In other settings, the source of the requirements
information is much less formal. For example, you might talk with others and create an
idea with them about a game. Regardless of the setting, at the beginning of the engineer-
ing effort, you elicit specific functional and nonfunctional requirements. To repeat the
point made earlier, these requirements concern not how you implement the functionality
of the software but rather what the software does from a user’s perspective.

Eliciting requirements is painful at first. Even if you work from a formal game design doc-
ument, you must still analyze the document to discover the system features you must sup-
port. To accomplish this task, you require information from others. A short list of the
resources for this information might be as follows:

m Users of the game you want to create

m Your previous experiences with game development

m Marketing, graphics design, and other experts involved with the effort

= Games that might be modified (mods) to create the game you want to develop

= Designers of the game you want to create

m The programmers who will create the new system
Other resources exist, but the primary idea here is that when you engineer anything, first
you figure out what to build, then you figure out how to build it, and finally, you build it.
If something is complex and serves many people, then it stands to reason that you are
going to need help. You are not likely to find any one person from whom you can elicit all
the information you need to collect. The next few sections visit some of the sources of

information mentioned in the previous list. Figure 2.1 provides a summary view of the
discussion.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

29

30

Chapter 2 = Requirements—Getting the Picture

Game

Game Designers
Design Software
Document Engineers

Players of
Games

Sources for
Requirements

Your
Previous
Experiences

Customer
Support

Figure 2.1
Requirements information originates in many places.

Users or Players

The first information resource named in the previous list is the user. The user of a game is
the player. Game designers ask many questions about players because designers target spe-
cific player markets. As an engineer involved in a requirements engineering effort, your con-
cern about players might have a different objective, but you should still consider the player
important. Because players have a good sense of how a game should feel and perform, they
have important information to offer you as you develop requirements. If you develop your
software using prototypes, players can work as testers. From testers, you can audit the playa-
bility of the game. Players provide you with an important nontechnical basis of information.

Previous Experiences

Your understanding as a software developer of how you have built a game provides an
enormously valuable starting place for requirements engineering. If you know how to
build a game, you can begin to make candidate statements for requirements modeled on
requirements statements you have made in the past. The requirements you generate in this
way must address the current system, but knowing key features in previous efforts helps
you more quickly locate them in the current effort.

caution

When you use knowledge from the past on a new system, you can begin to prematurely design the
new system. You begin to implement the features of the system before you fully identify them. To
avoid premature design, use previous knowledge only to determine what is needed, not how you
will implement what is needed.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Essential Notions

Mods

Games that are developed from existing games are called mods (for modified games). If
you use a mod as a template for your new game effort, you can save months of work.
However, mods can also create major risks. One risk is to assume that the mod does not
possess faults that might end up costing you development time rather than saving you
development time. It could be that the mod has major design flaws or was released with-
out thorough testing. Because such risks inevitably accompany legacy software, if you
assume you can take something for granted, you might be inviting disaster. The best pol-
icy is to be cautious. When you work with a mod, break away from the tendency to think
that you can assume that the mod represents the best possible way to do things. If you use
a mod, do not start by accepting every feature of the mod without criticism. Begin your
requirements effort as a blank slate. Until you have critically assessed the risks, do not
bring anything forward from the mod.

note

An old saying in engineering circles is that engineering innovations are not revolutions; they are
evolutions.

Designers and Design Documents

Designers are not necessarily programmers. They are often artists who specialize in game
design. They sometimes work in a marketing or creative group wholly separate from the
engineering group. As an engineer, your first exposure to designers’ work might be
through a game design document. (Appendix D, “Software Engineering and Game Design
Documentation,” provides a sample game design document.) Such documents, along with
their authors, inform you about the audience that the game addresses, the genre and rules
of the game, and how the game should look and feel as the user plays it. The game design
document lays out the stories, levels, characters, rules, musical themes, and a multitude of
other things that go into a game. These are all candidate features of the game. From these
features, you derive the functional and nonfunctional requirements of the system.
Requirements support features.

Who Gathers Requirements?

A person who gathers requirements is a requirements analyst. A requirements analyst is
someone who knows how to work with the documents, processes, and techniques that are
involved in the activities encompassed by requirements engineering (which is also called
requirements analysis). Requirements analysts work in several capacities (identifying busi-
ness processes or data schemes, for example), so if you want to be precise about your lan-
guage, you refer to someone who is involved with software as a software requirements

TEAM LING - LIVe, Informative, Non-cost and cenuine !

31

32

Chapter 2 = Requirements—Getting the Picture

analyst. This person’s work involves eliciting, analyzing, specifying, verifying, and manag-
ing the functional and nonfunctional requirements of the software system.

Because the activities of requirements analysis extend throughout the lifecycle of the soft-
ware product, the work of the requirements analyst becomes fairly involved. Consider the
following list:

= Obtaining from executives the scope of the game

= Interviewing customers

Guiding developers through the refinement of requirements

= Analyzing requirements to discover basic system properties

= Maintaining documents that list and elaborate requirements

= Managing how requirements are changed during the development process

This chapter deals with all of these activities.

Why Do You Need Requirements?

Engineering involves stating a problem and solving it. Requirements are how you state a
problem. What happens if you state no requirements? Well, then you are not in a position
to perform engineering. This might sound a bit arrogant, so let’s try another approach.
Take the case of the classical hacker. A hacker is something like a performance artist. He
performs and then figures out afterward what the performance was about. This is, in fact,
what makes the performance worthwhile. Along the same lines, the difference between
hacking a game and engineering a game is that the hacker first codes and then discovers
after the fact the product or resulting game. The game is a kind of controlled accident. The
engineer, on the other hand, specifically plans the game before code is written.

Other justifications exist for requirements. Table 2.1 shows you some of the standard
arguments.

Table 2.1 Reasons for Requirements

Reason Explanation

Solving the problem You must specify the problem you want to solve.

Planning Unless you specify all the behavior that the system needs to support,
you cannot determine how much time you require to create the
system.

Testing Unless you create a list of the things a system is supposed to do,

when you finish your development effort, you will have no way to
responsibly test whether the system actually does what it is supposed
to do.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Essential Notions

Reason Explanation

Extension If you want to add to a system after it has been released, you will find
your work difficult to accomplish unless you know what it does and
how you can add to what it does.

Cost Studies indicate that when products are well specified, they can be
developed much less expensively than otherwise.

Maintainability When products are specified, they can be fixed much more readily
than when they are not specified.

Maturity A software development organization cannot meet the Capability

Maturity Model (CMM) standards for organizational maturity without
putting in place procedures for engineering requirements.

What Results from Requirements?

When you engage in a requirements gathering (engineering) process, your main deliver-
able is a software requirements specification. This topic will be discussed in this section and
in the sections that follow, but it will not hurt at this point to repeat that five general activ-
ities of requirements engineering are often named in software engineering literature.
These are as follows: elicitation, analysis, specification, verification, and management. You
create and use different tools, documents, and processes as you perform these activities.
The sections that follow name some of these. Figure 2.2 shows you some of the common

requirements tools.

Software
Requirements Traceability
Use Cases Specification Matrix
Document
Activity e Tasle Task-Object-
Diagrams and Artifacts of Remarks Table
Requirements
Analysis
Preliminary List
of Classes
Figure 2.2

Common tools aid in the requirements engineering effort.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

33

34

Chapter 2 = Requirements—Getting the Picture

Use Cases

You employ use cases in most areas of requirements engineering to help you understand
how events occur, how things depend on each other, and whether you have left things out.
Use cases involve use case diagrams and use case narratives and scenarios. Chapter 3, “A
Tutorial: UML and Object-Oriented Programming,” presents a discussion of the Unified
Modeling Language (UML) and use case diagrams. This chapter examines employing use
cases in the development of a set of requirements for Ankh, the game discussed in the
course of this book.

A use case is basically something that you write, but the appeal of diagrams is enormous.
You can use both diagrams and narratives. You're encouraged to use diagrams as tools of
analysis and comprehension (in fact, try using SmartDraw as a kind of surrogate CASE
tool for diagramming use cases), but at the same time, it is important to emphasize that
in practice, a use case is a document rather than a diagram. When this book suggests, for
example, that you create an appendix to your software requirements specification for use
cases, it is encouraging you to include text versions of use cases rather than diagrams.

The terms narrative and scenario designate what might be referred to as informal and for-
mal versions of use cases. A narrative is just what you would probably expect: a paragraph
that tells a short story about how the user interacts with the system. Scenario designates a
narrative that has been broken into a numbered sequence of events.

Conventions differ. This book presents a set of suggestions. The books mentioned at the
end of the chapter provide excellent sources for a deeper, more disciplined, and scientific
understanding of how to develop use cases.

Activity Diagrams

The UML provides a tool called an activity diagram, which is a flow chart that allows you
to show, among other things, how events you have named in use cases can be ordered and
traced. (Chapter 3 provides a review of the UML activity diagram.) When you find that
the events that make up a use case are difficult to order, activity diagrams can help.
Activity diagrams enable you to unravel complex or concurrent event flows so that you
can place them in use case scenarios. In addition, activity diagrams are analysis tools, so
they provide a ready means of moving into design activities that involve sequence dia-
grams. (See Chapter 4, “Software Design—Much Ado About Something.”)

Software Requirements Specification

This book uses both use case—driven requirements development and a more traditional
approach based on the drafting of a list of requirements formally stated in a requirements
specification. Some analysts consider this approach redundant. It isn’t. One reason to both
list requirements and present them as use cases is that it makes little sense to start from

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Avoiding Difficulties with Requirements

scratch when developing a game. A list allows developers a ready avenue for starting out
the requirements. Use cases can then be used to expand, explore, and verify requirements
in the list. Another reason is that the use case—driven approach usually leads from user
needs to what is referred to as the user interface. With games, the opposite is the case. The
software engineer involved in creating a game usually knows a great deal about what the
game will look like; the question is how to provide a system that achieves what is given.

The Institute of Electrical and Electronics Engineers (IEEE, usually pronounced I-triple-E)
provides a document template (see Appendix D) that shows you how to organize the infor-
mation you gather as you specify the requirements for the software system you want to
develop. Begin with this template, which is for a Software Requirements Specification (SRS).

The SRS feeds into other documents: the project plan and the design document. The pro-
ject plan, among other things, lists all the tasks that developers must perform to complete
the product. The design document shows how the functionality detailed in the SRS is to
be implemented. Unless the SRS is complete, the design specification ends up requiring a
great deal of rework.

TOR Chart

A Task-Object-Remarks (TOR) chart allows you to list tentative objects that address the
functionality the requirements stipulate. If you make use of the TOR chart from early on
in your requirements effort, you will have at hand a good tool for identifying the tasks that
your requirements imply and the objects you might name in association with the tasks.
For now, this book uses class and object interchangeably. Chapter 3 explores the differ-
ences. A class is a static model used to create objects. You can use a TOR chart to collect
names you might later assign to classes.

Traceability Matrix

After you have engineered requirements for a software system (a game), you must main-
tain and track the requirements. A useful tool for this work is the traceability matrix. To
create a traceability matrix, you can use an Excel spreadsheet, a table in a Word document,
or a tool such as SmartDraw. The resulting matrix allows you to track and confirm
changes to your requirements. You can also use the matrix to trace test cases you develop
to verify or validate requirements. A final use for this matrix is to record the priorities and
statuses of requirements.

Avoiding Difficulties with Requirements

Before delving into the labor of engineering a set of requirements, it is wise to spend a bit of
time reviewing things you should and should not do as you work with requirements.
Engineering requirements alone are not enough. You must use care not to create incomplete,

TEAM LING - LIVe, Informative, Non-cost and cenuine !

35

36

Chapter 2 = Requirements—Getting the Picture

spotty, redundant, or inaccurate requirements. Whether you work with requirements state-
ments or use cases, you seek to find the essential behavior of the system and to specify this
behavior in nontechnical, clearly stated terms.

Establish the Scope of the Project

One of the major reasons that a software project fails is that those involved in the project
neglect to establish a clear project scope. What is scope? It is the boundary of the engi-
neering effort. It designates the set of functionality you want to include in the system.
With respect to the effort of requirements exploration, scope is where you stop. If you
decide to develop a single-player Role-Playing Game (RPG), your knowledge of the scope
of the project allows you to determine that you will not invest your time in developing
multiple-player or Internet capabilities. Figure 2.3 summarizes the main points.

Establish the Identify the
I%%%?%géﬂfs customers and
e their needs.
Measures to
Ensure the
Success of the
Requirements
Engineering Effort
Confirm the Control the
feasibility of addition or
each alteration of
requirement. requirements.
Figure 2.3

Taking a few precautions prevents requirements rework.

Scope Statements

Where do you find information that allows you to establish the scope of the requirements
effort? The game design document provides the most readily available source of this
information. In the game design document for Ankh, for instance, the section of the doc-
ument that summarizes the game provides most of the information needed to determine
the functional features the game software includes.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Avoiding Difficulties with Requirements

If you do not possess a game design document, you can establish the scope of the prod-
uct by creating what is sometimes known as a scope statement. Any number of names
exists for such a document, but its general intention is to establish the following:

m What the project is intended to do
= What group of people the project should serve
= How long the project should require to build

If you do not begin your engineering effort from a scope statement, then it is likely that
your engineering effort will cost more and will take longer to complete. Further, to repeat
a point made earlier, your project is also more likely to fail.

Outer and Inner Scope Boundaries

Scope has two types of boundary. The boundaries stem from the fact that any given sys-
tem or subsystem has extensive and intensive features. System features can be viewed as
such things as the ability to show variable camera angles or support world motion. Such
features give the game general qualities that do not vary much from game to game because
the technology and design concepts behind such features are common throughout the
industry. Such features provide an outer scope.

On the other hand, scope can have an inner scope. At a given level, for example, an enor-
mous number of player options can be made available. These can be so arcane or cryptic
that it is almost impossible that any other game will have them.

To help control the growth of outer and inner scope, you have two ready resources. Both
are available in most game design documents. (See Appendix D.) The first resource is the
game overview, which provides a guide to the extensive features of the game. If no such
narrative is available, you can write your own. This can be a general use case narrative that
describes the features and objectives of the game. Artifacts that capture this narrative are
system context use cases and system context diagrams.

The second resource allows you to obtain an inner scope view of a game. For this, you can
draw upon a sixty-seconds-of-play scenario, which you usually find in the game design
document. There might be a multitude of such narratives, depending on how the game
designers who are associated with your project do things. The play scenario establishes the
level of complexity you must capture as you develop your requirements. If no such nar-
rative exists, then it is a good idea to compose the scenario yourself. Artifacts that are good
for capturing the sixty-seconds-of-play scenario are use case narratives, use case scenarios,
use case diagrams, and activity diagrams.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

37

38

Chapter 2 = Requirements—Getting the Picture

Identify Your Customers

A customer is sometimes called a stakeholder, but here, to keep things simple, the term cus-
tomer is used. From an organizational perspective, you can describe a customer in many
ways. Most commonly, a customer is the end user of the game—the player. Many other cus-
tomers can be found as well. Game designers and people who specialize in developing
graphics are customers. People who create music, sound effects, character dialogues, and
voice recordings are also customers. All of these people expect what you develop to give life
to what they have contributed. Each such specialist is a customer of the requirements
effort.

Consider again the customer who is the player of the game. Upon deeper analysis, you will
find that the player has many roles. Use cases allow you to explore these roles. These roles
have different objectives or goals. For example, a player might be someone seeking to set
up a session of play. At another time, the player might be someone wanting to know a
cumulative score. At yet another time, a player might be someone wanting to learn the
game. Each is a different role, and considering these different roles is important to the
requirements effort.

When requirements fail to capture functionality that comprehensively addresses the needs
of all customers, they are said to be incomplete. Generally, the design document for the
game provides sections for the features of concern to all the key customers (or stakehold-
ers), but as you elicit software requirements, it is easy to overlook features. To avoid
incomplete requirements, develop use cases to ensure you have achieved completeness.

Feasibility

The feasibility of a requirement rests on whether the development group possesses the
technical and budgetary capabilities to implement the functionality that the requirement
stipulates. Technical capabilities stem from the expertise of the developers. Budgetary
capabilities depend on a number of factors not discussed here, but one general way of
putting it is to say that even if the expertise exists to develop the solution, the money to
pay for the development might not. To determine whether a system meets technical and
budgetary constraints, managers must possess a clear statement of requirements.

When requirements are clearly stated, development managers can more readily assess the
three major feasibility (also called risk) factors that every project faces:

= The number of features. If you want to create a game with lots of features, then
you might be willing to take as much time and to spend as much money as is
needed to add the features. Still, even if you have plenty of time and money, you
must consider the maximum number of features you can realistically expect to
implement and test.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Avoiding Difficulties with Requirements

= The amount of money. If money is a factor, then you obviously need to limit the
number of features. Each feature adds to the expense of the project, and in addition
to construction alone, you must pay for quality assurance (testing). If you release a
system that has been inadequately tested, the consequences can be painful.

= The quality of the product. If you

want to produce a product that has
the maximum degree of quality, then
cost and feature count might not be
high on your priority list. It remains,

however, that you will have more @% o
time and money to spend on the & .
quality of each feature if you limit & Scope

the number of features.

Features, cost, and quality are feasibility fac- Quality
tors that you can understand if you know

the scope of the system. Figure 2.4 shows

the basic relationship among these three Figure 2.4 o
factors Requirements feasibility involves cost, number,

and quality.

Uncontrolled Growth

Many software development efforts fail because software developers do not adhere to the
requirements specifications as they develop the software. Two major risks in this respect
are feature creep and goldplating. One especially troublesome outcome of feature creep
and goldplating is that the testing effort becomes more difficult because the test team
might not have test cases or scenarios for the added features. Such untested features might
be the cause of problems when the product is deployed. The following sections describe
these two types of risk in greater detail.

Avoid Feature Creep

Feature creep occurs when developers, customers, or managers add features to a project
even though the scope of the project has already been set. This happens in two general ways.
One form occurs when you begin to engineer the requirements list. You can discover fea-
tures that you add because you think they make the product more interesting. For example,
if the game design document lists what you consider a rather bland set of character options,
you might decide to add extra options to make the basic list more interesting. Other people
might add still more options. In this way, you extend the specified features of the game
beyond what the designers asked for.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

39

40

Chapter 2 = Requirements—Getting the Picture

The other form of creep occurs after development begins. Although the specification
might state clearly the requirements you are to implement, you extend the requirements
as you work when you find something that seems to enhance the game. You add unspec-
ified functionality. Although the functionality specified in the requirements remains the
same, the implemented functionality grows. New features result from unspecified work
on the product, but the specified product is not more complete.

Avoid Goldplating

Goldplating occurs when developers develop the technology they want to develop rather
than the product the requirements specify. Goldplating undermines the development
effort because while developers make the game interesting from a technical perspective,
they drive the implementation costs of the game sky high. Developers might even fail to
implement the features that the requirements specify. Goldplating begins when a pro-
grammer finds an interesting innovation on one or another path of implementation that
begins with a requirement. Rather than seeking only to implement the requirement, the
programmer becomes obsessed with exploring the implementation process itself in some-
thing akin to a sophisticated hacking experiment.

What Makes a Good Requirements Specification?

During the requirements engineering phase of the development effort, you create a set of
requirements and prepare the way for the design effort. The first sign that you have not
successfully completed the requirements is that the design effort becomes bogged down
in rework. Rework requires that those involved in the design effort eliminate flaws in work
performed earlier in the project. What makes a good requirements specification? The
answer is that after the design effort begins, you find that you can work steadily from the
requirements without having to correct or update them.

Most authorities state that if a set of requirements possesses eight basic qualities, then the
success of the development project that follows from them is likely to succeed. Figure 2.5
provides a high-level view of these qualities. The following sections present a bit more
detail.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

What Makes a Good Requirements Specification?

Managed

Prioritized Complete

Best
Practices
for
Requirements

Verifiable

Feasible

Figure 2.5
Seek quality in requirements engineering.

Make Requirements Complete

To be complete, a set of requirements establishes the scope of the project and states the
functionality that must be implemented to reach this scope. Nothing is left out. To achieve
this goal, you should explore requirements so that you can see how they relate to each
other. The most ready means of exploring requirements is to employ use case scenarios.
The goal is to find gaps. Stating a set of requirements without exploring them using use
cases might result in gaps, and gaps are costly.

Make Requirements Correct

Correctness has to do with whether the requirement provides the developer with the
information needed to implement the stated feature. For this reason, as you elicit require-
ments, it is important to use different models and views of the product you want to build

TEAM LING - LIVe, Informative, Non-cost and cenuine !

41

42

Chapter 2 = Requirements—Getting the Picture

to ensure that you arrive at the appropriate level of precision for the requirement. Making
a list of what you think will need to be implemented does not do the job. Instead, it is a
good idea to reduce the complexity of the product and sort out what needs to be imple-
mented. You can’t think of everything at once. You must analyze, decompose, and explore
the features of the product before you can come to understand how to build it. A require-
ment is correct when the resulting system behavior supports the feature that the require-
ment addresses. An incorrect requirement leads to system behavior that does not support
the feature that the requirement addresses. Add to this the fact that the cost of a system
increases if a problem with a requirement is discovered after a feature has been imple-
mented, for then it might be necessary to do everything over.

Necessary Requirements Only

As you will see when this book explores the narrative analysis approach to requirements,
almost any phase of requirements elicitation begins with a set of provisional statements.
What makes these statements provisional is that some of them will be eliminated. If you
do not eliminate redundancies during the requirements engineering phase of your pro-
ject, you end up dealing with them once again at the design phase. The number of prob-
lems then increases. In the requirements phase, everything is open to debate and is fairly
easily changed. In contrast, during the design phase, the complexity of the product
increases. If you have begun design work for an inessential feature, after a time you are
bound to discover your mistake. If you have developed a number of design features that
need to be reworked when you decide to remove the redundant feature, you might easily
fall behind schedule. When unnecessary requirements are not questioned during the
requirements analysis phase, they cause unnecessary complexity during the design and
construction phases.

The more you explore the relationships among objects, the more you discover how func-
tionality can be duplicated. When you have made such discoveries, you refine or eliminate
requirements. The process is iterative and incremental. In other words, you write a require-
ment as a tentative statement. You explore the requirement using different tools, such as
use cases and activity diagrams. Tools help you understand the requirement so that you
can rewrite it with greater precision.

Consider the Feasibility of a Requirement

Earlier, feasibility was discussed in the context of the scope of a game. When you include
a requirement in a requirements specification, your inclusion brings with it an associated
risk. The risk goes in the two directions mentioned in the discussion of scope: project fea-
sibility and technical feasibility. Project feasibility has to do with whether you have the
time and money needed to implement the feature. Technical feasibility concerns whether
the technology you are working with makes it possible to implement the feature. (Chapter
8, “Risk Analysis,” investigates risk analysis in detail.)
TEAM LING - LIvVe, Informative, Non-cost and cenuine !

What Makes a Good Requirements Specification?

Generally, each requirement should be subjected to the following question: Can this be
implemented? In other words, do you have the time, technology, and testing capabilities
necessary to ensure that the feature is implemented responsibly and robustly? If not, then
you might want to remove the feature from the list. Risk has much to do with how you
prioritize requirements.

Requirement Priorities

Even if you have fully developed a list of requirements, you are not finished yet. You must
evaluate the list to discover, first, which requirements are on the critical path. In other
words, which requirements support features that are absolutely necessary if the game is to
be delivered? Next, you must decide what constitutes a desired but unessential feature.
Such requirements support features of the game that make it more interesting or mar-
ketable than it might be otherwise but are not necessary for it to be released. Still other
requirements can be regarded as secondary. Secondary requirements support features that
can be implemented either as an upgrade or during a subsequent release.

Secondary features possess value because they provide momentum for future develop-
ment efforts. They can also be the basis of a scheduled product upgrade. If you plan
accordingly, you can reuse requirements to implement secondary features during a subse-
quent release. You are able to begin where you left off.

Eliminate Ambiguity

Ambiguity has to do with whether a single requirement is stated clearly or whether two
(or more) requirements can be distinguished. Consider the following two statements:

The player shall be able to exit the game at any time.

The player shall be able to choose to exit the game at any time.

Are these statements the same? What are they asking for? It is not the job of the develop-
er to either have to guess or to state the obvious. If a question remains to be asked, it is the
responsibility of those who elicit the requirements to ask the question.

Verify and Validate Requirements

All requirements should be validated and verified. These activities involve using use cases
and other tools to make the requirements visible in the behavior of the product. This
behavior is what the customer expects. Even if a requirement does not strike you as some-
thing that can be shown to exist or to work properly, it is possible to set up test scenarios
in which, either directly or by inference, it can be shown that a given requirement meets
the needs of the customer.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

43

44

Chapter 2 = Requirements—Getting the Picture

note

Verification in general means confirming that the system possesses a feature or requirement. Vali-
dation tries to ascertain that a feature correctly provides what the user expects or needs.

Manage Requirements for Change

Requirements must be placed under change control. (See Chapter 10, “Control Freaks and
Configuration Management,” for a detailed discussion of change control.) As you proceed
with your development effort, requirements might change. You track the changes in the
SRS by noting how you have changed requirements. In addition, you can use a require-
ments matrix. The matrix allows you to track the status of each requirement. It allows you
to see the use cases and test cases that are related to each requirement. It also allows you
to trace each requirement to design features (which Chapter 4 deals with).

More extensive issues related to managing requirements are covered in the discussion of
software configuration management. (See Chapter 10.) A number of techniques for con-
trol, storage, and retrieval of documents and source code come into play.

Engineering Requirements

In this section, you begin the work of moving through a requirements engineering process.
One theme developed throughout this book is that you develop a software system itera-
tively and incrementally. Requirements engineering works like all other activities involved
in software engineering.

Iterative Increments

When you engineer requirements, you face a number of problems. The best approach to solv-
ing these problems is to regard requirements engineering as both incremental and iterative.

In the requirements engineering phase of a project, you visit a requirement many times.
For example, you start with a statement culled from a discussion of the game design doc-
ument. You formulate the requirement and make it a tentative part of the SRS. Days later,
you might revisit the requirement and analyze it using a use case. When you examine the
requirement through the use case, you might find that its first formulation was limited or
defective. You reshape the requirement to accord with the new understanding that your
analysis reveals.

In this way, you develop the requirement both iteratively and incrementally. Visited at dif-
ferent stages of the requirements effort, the requirement is examined iteratively. Examined
and changed in the light of a growing body of knowledge, the requirement is reformulated
incrementally. You engage in the two activities together to gradually refine the requirement.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Engineering Requirements

Cycles of Requirements Development

The development of a set of requirements proceeds incrementally and iteratively. The
approach that this text proposes involves four increments—which can be called phases—
and any number of iterations. The four phases are open to adaptation and are not offered
as a methodology. (See Chapter 16, “Process Improvement.”) The phases reflect a model
used by many companies and presented in many requirements engineering texts. Table 2.2
presents the phases with brief descriptions. Figure 2.6 indicates how they might be viewed
as a process flow.

Table 2.2 Requirements Engineering Phases

Phase Description

Elicitation Gather information about the requirements from the game design document
and other sources. Use information drawn from a game that provides com-
ponents that are to be brought into the current effort. Create a first draft of
the software requirements specification.

Exploration Create a candidate list of use cases. Create an initial list of requirements. The
first use case to be created should be the game context use case. The next case
should be the sixty-second scenario. Update the SRS.

Analysis Develop use cases based on the candidate list. Start with the list of
requirements and test for completeness and validity. Add use cases and
requirements. Generate a test case for each use case.

Refinement Prioritize the requirements you generate. Create a requirements matrix. Refine
requirements language. Refine test cases. Update the SRS.

The elicitation phase begins with the layout of the SRS, the review of the game narrative,
and the incorporation of concepts or elements from a mod. The IEEE SRS template is
good to use because it provides a convenient way to centralize the activity of the require-
ments engineering effort. Use cases can be appended to the requirements document. A
matrix can be also be appended, and through the matrix, requirements and uses cases can
be traced to the test plan.

Next comes the exploration phase, which involves developing candidate use cases and
requirements. Using a task-object-remarks table, you can find relationships among
objects, requirements, and use cases that help you eliminate unnecessary requirements
and prioritize those that remain.

During the analysis phase, you seek to develop the details of requirements and to discov-
er gaps that your initial pass through the candidate lists might have left open. This phase
allows you to develop use cases that are detailed enough to show you how to test require-
ments. As you prepare test material, you can also establish criteria to use to validate
requirements.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

45

Chapter 2 = Requirements—Getting the Picture

In the refinement phase, you determine the priorities and dependencies of your use cases
and requirements. You baseline the requirements and use cases for inclusion in the soft-
ware requirements specification, and you place the information you possess in a require-
ments traceability matrix.

q Elicitation

Assimilate Mod
Model

v | Exploration
." Generate “, TOR Create Candidate ____.
\ Candidate Classes Chart > Requirements Update SRS

v | Analysis
Create Use Analyze Use Case Create Use
Case Diagrams Scenarios Case Scenarios

Figure 2.6
Requirements engineering iterates through different types of activity.

Y

(Lay Out SRS)

Analyze Game Design
Narratives

Create Scope
Use Cases

Eliciting Requirements

Figure 2.7 provides an overview of the activities that are involved in eliciting requirements.

Elicitation
N

Assimilate Mod
Model

Y

(Lay Out SRS)

Analyze Game Design

Narratives

Figure 2.7
Explore requirements using different approaches.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Eliciting Requirements

When you elicit requirements, your main tasks are to lay out the requirements document and
to begin bringing forward any components from previous games that you think you want to
use. Further, you analyze the game design document to discover the scope of the game.

The Requirements Specification Document

The most essential artifact involved in the requirements engineering effort is the SRS.
This, together with use cases, is usually the primary deliverable of the requirements analy-
sis phase of the software engineering effort. Although it is the end product, it is also a doc-
ument that you first draft at the start of the requirements phase. As you work through the
requirements engineering process, you rewrite this document and use it as the central
focus of your development effort.

This section examines the SRS document in detail. (Appendix D provides a sample SRS.)
It begins with an overview of the steps used to develop an SRS. These steps are based on
the process put in place for development of Ankh.

The SRS Template

The first phase of activity shown in Figure 2.7 involves laying out the SRS. To lay out the
SRS, you begin with a template, preferably one that you base on the IEEE Standard 830.
Reasons to use the IEEE template are that it provides the most universally acknowledged
template for software requirements specification, and is also open to modification. The
description that the IEEE provides of the template continues for several pages, and one
thing that you discover as you read it is that the IEEE allows you to use it as you deem nec-
essary. Generally, the main requirement is that you preserve the general form. The tem-
plate provides the following structure of information:

Table of contents
Introduction
1.1 Purpose
1.2 Scope
1.3 Definitions, acronyms, and abbreviations
1.4 References
1.5 Overview
Overall description
2.1 Product perspective

2.2 Product functions

TEAM LING - LIVe, Informative, Non-cost and cenuine !

47

48 Chapter 2 = Requirements—Getting the Picture

2.3 User characteristics
2.4 Constraints
2.5 Assumptions and dependencies
Specific requirements
3.1 External interface requirements
3.1.1 User interfaces
3.1.2 Hardware interfaces
3.1.3 Software interfaces
3.1.4 Communications interfaces
3.2 Functional requirements
3.2.1 Subsystem A name
3.2.1.1 Requirement statement—
3.2.1.2 Requirement statement—
3.2.2 Subsystem B name
3.2.21.2 Requirement statement—
3.2.21.2 Requirement statement—
3.3 Performance requirements
3.2.1 Standards
3.2.1 Hardware limitations
3.4 Design constraints
3.2.1 Availability
3.2.1 Security
3.2.1 Maintainability
3.6 Other requirements
Appendixes
Index

Table 2.3 reviews the sections of the SRS. You can find an example of the SRS for Ankh in
Appendix D. Generally, every project should customize the template to eliminate parts
that are not needed. Ignore parts of the template that have no applicability to your devel-
opment style.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Eliciting Requirements

Table 2.3 Topics of the SRS Specifically Described

Section Description*

Table of contents If you set up your document as a FrameMaker, Word, or
WordPerfect document, this will be taken care of
automatically.

Introduction purpose State why the product is to be created. In other words, the
product furthers a given product line, seeks to explore a
given type of technology, provides a given service, or
exploits a given market sector.

Scope State the general constraints that apply to the system. For
example, the game is an RPG for a standalone personal
computer with a single-user interface.

Definitions, acronyms, Provide a heading and a brief introductory sentence; then

and abbreviations make a definition list of every technical term, abbreviation,
or acronym you use in your document. Add to this as you
go. It is a good idea to put the terms in bold and to
alphabetize them.

References At a bare minimum, list references to the design document,
the test plan, the project plan, and the game design docu-
ment. What is a reference? Basically, it is the document
name, the document number, and the document date. The
date might not be relevant, but you should always seek to
identify documents that are current with the requirements.
You can supplement the references with hyperlinks.

Overview This can consist of a narrative, a context diagram, or other
elements. You can use this section in a number of ways. For
example, if you use a context diagram, you can show general
subsystems. Provide a general system view of the product
that anticipates the details you offer in section 3, “Specific
requirements.” Make reference to section 3.

Overall description A document division heading that the IEEE provides. Use it
if you need it.
Product perspective In this section, you explain, for example, that the game is

based on a game design document. (In this case, it's the
game design document for Ankh). You explain the genre of
the game—an RPG for standalone personal computer
users, for example. If the game is a mod, you identify and
explain the extent to which its components or conceptual
framework originates with the mod. You also briefly ex-
plain how the game works. For example, a single player
guides a character through seven levels of combat to seek
a final goal. From this section, the reader gains a sense of
the derivation, intent, and interactive goals of the product.

(continued on next page)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

49

50 Chapter 2 = Requirements—Getting the Picture

Table 2.3 Topics of the SRS Specifically Described (continued)

Section

Description*

Product functions

User characteristics

Constraints

Assumptions and dependencies

Specific requirements

External interface requirements

User interfaces

Hardware interfaces

Software interfaces

Break the system into its general subsystems, if possible.
The subsystems contain classes. The classes provide ser-
vices, such as Graphical User Interface (GUI) interactivity,
Artificial Intelligence (Al), and file save capabilities.
Generally, then, you report that the system has anywhere
from a few to, say, a dozen basic types of functionality, and
you label these types of functionality in anticipation of
your high-level system diagram.

Profile the player of the game. For example, the game is
designed for players in their teens or older. The levels of
complexity range from rank beginner to advanced. If you
think that players of a given game will like this one, then
draw the comparison here. If you have access to a market-
ing document or a game design document, then you can
draw on it to fill out this section.

State what you know about the limitations that apply to
the game. For example, it is a single-player game that can-
not be extended to multiplayer or Internet use. The game
should not be expected to run satisfactorily on computers
with less than a given performance rating or, on the other
hand, will run best on computers that meet specific perfor-
mance ratings.

Explain, for instance, that development of the system
depends on the use of DirectX and Win32 functions.
Explain, for example, that you are using a given installation
package.

A document division heading that the IEEE provides. Use it
if you need it.

A document division heading that the IEEE provides. Use it
if you need it.

User interfaces include interactions (for a PC game) with
the keyboard, a mouse, or a joy stick (to name a few). User
interfaces also include screens or menus. You can point to
an appendix for examples of interfaces. Another approach
is to provide a reference to the game design document,
where screen shots or mockups might be available.

State whether you need a modem, a joy stick, or anything
else to play the game. Identify the standard, if any, that
applies to the device. If the system uses stereo sound, say
so here. If it plays movies, say that, also.

State whether the game depends on other software and
state the dependency specifically. For instance, the game
requires Windows XP.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Section

Eliciting Requirements

Description*

Communications interfaces
Functional requirements

Subsystem name

Requirement statement

Performance requirements

Standards

Hardware limitations

Design constraints

Availability

Security

State here if the game requires a modem or other devices.
You can also specify minimum transfer rates.

A document division heading that the IEEE provides.

Use it if you need it.

Break up requirements according to the subsystem or com-
ponent to which they apply. You might have to wait a
while before you can accomplish this task. It is usually not
possible until you have created a high-level design context
diagram. When you do this, create abbreviations or codes
for each subsystem and prefix them to the requirements
number.

Use statements that specify the requirements. You might
want to vary this approach, however. As shown in the SRS
in Appendix D, state each requirement and number it. Do
not try to list, for example, classes or objects. Provide use
cases and other artifacts to supplement requirements
statements. Hundreds of requirements statements might
appear under a given subsystem. For this reason, you'll find
that the IEEE form of specification inevitably becomes dis-
proportionately large in section 3, where the functional
requirements appear.

State the constraints that apply to your game. Performance
relates to the performance of the software. If you have set
specific requirements for how fast levels should take to
appear, then you can state them here.

If you are developing the game for export or introduction
into a specific market, then state the specific standards
with which the game must comply.

State the hardware limitations that apply to your game.
State at least the minimum system requirements. This
includes the performance of the machine, the graphics
card, and Internet capabilities.

A document division heading that the IEEE provides. Use it
if you need it.

Availability for a standalone computer that runs on a PC is
a fairly straightforward proposition, so you need to say
only that the game is available to the system user at all
times. On the other hand, if the game has Internet depen-
dencies and load or operational factors limit the time the
user can access the network, then you can state such limi-
tations here.

State whether the system includes security measures, such as
passwords, and whether the system presents security risks.

(continued on next page)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

51

52 Chapter 2 = Requirements—Getting the Picture

Table 2.3 Topics of the SRS Specifically Described (continued)

Section Description*

Maintainability State whether and how the system can be modified—
upgraded or fixed.

Other requirements If anything outside the previous exhaustive litany occurs to
you, put it here.

Appendixes You can include appendixes for use cases and a require-
ments matrix.

Index This is optional unless you have a technical writer around

who is an expert at generating indexes. Word, WordPerfect,
and FrameMaker make it easy for you to create an index
even if you are not a technical writer.

*The template here is based on the version of the IEEE template developed by Hans van Vliet, Software Engineering
Principles and Practices, Second Edition (New York: John Wiley & Sons, 2000), pp. 224-231.

Using the SRS Template

The way you set up your requirements document depends on the development style you
adopt. It’s good to use the template as a starting point. Section 3 is the most important
part of the template, and as mentioned before, this section is used to list requirements
statements. An appendix is then used to state corresponding use cases for many of the
requirements listed in section 3. Examine the SRS in Appendix D for an example of how
to create the primary document.

Using the Design Document for the Game

The documentation for your project depends on how your organization or group sets up
your game development project. (See Chapter 18, “Documentation—Learning How to
Learn,” for more discussion on this topic.) Generally, before the engineering effort begins,
the game designers finalize the game design document. The game design document is not
an engineering document. Do not confuse it with the SRS. For a sample of a game design
document, turn to Appendix D or see the documents on the CD.

It is assumed that you have a description of the game from which you can extract much
of the basic information about the game. This information begins with two narratives.
One tells about the game in a general way. This is the game summary. The other tells about
what it is like to play the game. This is a sixty-seconds-of-play sequence. Until you have
these two items in place, you have no way to establish the scope of the requirements effort.
When you cannot establish the scope, as mentioned before, you cannot know when you
have finished your task.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Eliciting Requirements

The Game Summary

The game summary is usually a part of the game design document. It might begin the
document. Its length varies from a few paragraphs to many pages. It describes the game
as a product: theme, objective of play, audience, number of levels (if applicable), type,
number of players, strategic points, and so on. From the game summary, you derive a clear
concept of what you will have to do, generally, to create the game.

As an example of a game summary, consider a paragraph from the game design document
for Ankh drafted by designer John Rose:

Ankh follows the quest for vengeance undertaken by Sekhem, an Egyptian
warrior determined to destroy those who defeated and killed his father. The
game focuses on the battles fought by Sekhem and his party of rebel warriors
on their journey to the Egyptian capital of Thebes. These conflicts escalate
from skirmishes to bloody clashes as the band of adventurers cross the desert
sands of ancient Egypt. Along the way, additional characters join the band
and new enemies attempt to stop Sekhem’s advance. Interaction involves tac-
tical control of the small army during Ankh’s many mélées, including strate-
gic maneuvers, hand-to-hand combat, and spell casting.

The player is faced with winning battle after glorious battle, driving Sekhem
toward his final confrontation with Uheset, the bloodthirsty Queen of Egypt.
Conflicts take place in real time, stressing the tactical and chaotic aspect of
warfare. Each level possesses its own ambiance and strategy, from the barren
plains of Thebes to the lush splendor of the Dashur gardens.

The graphics of Ankh illustrate the varied and stylish architecture and land-
scapes of ancient Egypt. The game’s music varies from haunting chants to
blood-quickening battle drums. All aspects of the game’s art and sound
immerse the player in the primal rage of ancient warfare.

What you derive from this passage begins with looking closely at the nouns. Note that you
see such terms as battle, player, Sekhem, additional characters, enemies, journey, tactical
control, strategic maneuvers, chants, drums, music, and sound. Working with this list, you
can begin to identify the general scope of the game. For example, the game has a player,
not players, and it has a single main character, Sekhem. Additional characters are identi-
fied as enemies. There is a journey, which implies the existence of several scenes in which
different battles take place. In every battle, players scheme and maneuver to achieve vic-
tory. Note likewise that the game offers chants, sounds, and music. And it is evident that
there is a winning battle.

The pattern of the game might be stated explicitly. You might recognize this as an RPG or
a strategy game. You might also begin to think of many features of games you have already

TEAM LING - LIVe, Informative, Non-cost and cenuine !

53

54

Chapter 2 = Requirements—Getting the Picture

developed that help you understand from the start how this game might be laid out. For
example, you might envision real-time or turn-based actions. Such notions possess great
value, but at this point, it remains important to resist talking about how you intend to
implement the game. The main goal is to derive an idea of what the general scope of the
game is. The outer scope should already be falling into place.

The Play Narrative

If the general game description helps you establish the outer scope, the sixty-seconds-of-
play narrative helps you establish the inner scope. This narrative is a part of most game
design documents, but it might be disguised in one way or another. For instance, you
might have to extract it from the game description. Wherever you find it, you will be able
to recognize it because it describes what it is like to play the game. Add to this that what
it describes has a specific beginning, middle, and end (which Aristotle said any real story
needs to have before it can be called a real story). If you have to create a sixty-seconds-of-
play narrative for yourself, find someone who knows the game design and work with this
person to envision a set of specific gameplay events.

As an example of a sixty-seconds-of-play narrative, consider a passage from the game
design document for Ankh authored by programmers Ben Vinson and Carlos Villar:

When the sequence begins, the narrator reads the back story as the text of the
story scrolls from the top to the bottom of the screen. General theme draw-
ings appear in the background of the text. At the conclusion of back story dis-
play, the scrolling words and screen fade and the level-one world appears.
This is Alexandria. Sehkem walks in from the edge of the map. As he walks,
four guards appear ahead of him, blocking the way. The guards declare,
“Give up your money!” At this point, the screen dims and the objective of the
challenge appears. The screen shows words in the foreground. The message
is, “Defeat all enemies.” Music starts playing. The reader can hear the words
read. The screen lasts two seconds before it begins to fade. Within five sec-
onds, the screen has disappeared and the player again sees Sekhem. The
guards approach. They bear short spears and shields. The guards jab with
spears. Sekhem must engage each of the guards and kill him. If Sehkem does
nothing, he is killed. (If you click on a guard, the character attacks that
guard. If you click the right button, Sehkem moves or attacks. If you click the
left button, you select.) Chases and attacks follow. A sound accompanies
each slash of Sekhem’s sword. Sekhem kills all the guards. When each guard
is killed, a quiet death cry is heard. When the last guard is dead, the current
level fades. The game auto-saves every twenty seconds.

From the sixty-seconds-of-play narrative, you can begin to establish a fairly precise defi-
nition of the inner scope of the game. You can identify specific actions. For example, the

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Eliciting Requirements

main character appears in a setting and faces several enemies. Each enemy approaches, and
the player must manipulate the character and kill the enemy. Music plays in the background,
and before the battle begins, a narrative appears to tell the player the story leading to the
scene. You also learn that to conduct battle, the player clicks the mouse, repositioning the
cursor to move the character.

Using Mod Requirements

The title of this section might be a bit difficult to understand. It does not mean that you
should go off to a file cabinet or some remote directory on your disk and retrieve a doc-
ument in which you have made requirements for some components of a game you now
want to use as the basis of a new game. On the other hand, you can reuse old games. With
respect to the requirements effort, what you have done before can benefit you now
because it provides you with a knowledge pattern. To use old components effectively, a few
precautions are necessary:

= Do not cut and paste. This is not elicitation. It is cutting and pasting. Always start
a new SRS and write it without cutting and pasting. Use the old document (if you
have one) as a kind of template or reference.

= Start with the view you have of the new game. Carry this view back to the old
game, somewhat as you might carry a flashlight into a dark place. What your new
game allows you to see is legitimate.

= View critically each notion you gain from a legacy specification. Evaluate the
worth of the old specification using ideas you derive from the context of your
new game.

The requirements you will find most useful in a legacy game are those that pertain to the
specification of outer-scope game engine features and outer-scope game genre features.
For example, Ankh is a limited role-playing game with some strategy and action features.
The game design document says that it will have a dialogue form of interaction. You
know, then, that you will be bringing classes forward from a legacy game that has this
same feature. You will not modify the requirements for this feature to any great extent
because you don’t need to. The strength of the game does not lie in the features of an exist-
ing game but rather in features added to the inner scope of the new game.

Preliminaries of Use Case Exploration

Use cases make it possible for you to successfully engineer requirements. Although this
book prescribes no fixed method, it can offer a few points concerning how your effort can
benefit from using use cases. The first point is that use cases should be regarded as tools
or means, not as ends. If you employ use cases as tools, you use them whenever you
require a convenient way to explore a problematic aspect of the system you are develop-
ing. You can also make use cases a formal part of your SRS, replacing the traditional

TEAM LING - LIVe, Informative, Non-cost and cenuine !

55

56

Chapter 2 = Requirements—Getting the Picture

statements with scenarios of use. Alternatively, you can adopt the approach provided here,
one of listing the requirements in section 3 of the SRS and then including an appendix in
which you provide use cases to supplement the stated requirements. Whatever approach you
adopt, creating use cases allows you a convenient way to formally explore requirements.

A Narrative Template for Use Cases

A narrative use case is best described as a paragraph relating events that have a beginning,
a middle, and an end. The beginning is sometimes called the trigger. The end is sometimes
called the goal or objective. You can develop a template for a narrative use case as a docu-
ment with headers, a table, or even a spreadsheet. (You can use SmartDraw—see Appendix
D.) The narrative form of a use case should be characteristic of the initial iterations of your
requirements-engineering effort, when you seek to establish the outer scope and play con-
text of the game. Figure 2.8 provides a basic template for a narrative use case. The template
has been filled in for demonstration purposes.

Use Case Name: Player Starts Game

Requirement(s) Explored: 1

Player (Actor) Context (Role): Player

Precondition(s): Game is installed and ready to play.

Trigger(s): Player selects game-start action.

Main Course of Action: The player selects the game-start action. The system
requests that the player select a profile. The player selects a profile and the
system loads it. After the system loads the profile, the system displays a message
to the player that tells him that the play can begin. The player acknowledges the
message that the system has displayed and begins playing.

Alternate Course(s) of Action:

The player does not select a profile. The system chooses a default profile. The
player does not start the game. The system asks the player if he wants to save
his profile. If the player says yes, the system saves the profile.

Exceptional Course(s) of Action: The system crashes when the game begins.

Figure 2.8
Use narrative use cases for preliminary exploration.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Eliciting Requirements

A Scenario Template for Use Cases

A use case that includes a numbered scenario serves best for exploring functional require-
ments. The major difference between a narrative use case and a scenario use case is that
the scenario divides the narrative into a numbered list and seeks to explore the actions
involved in greater detail. Because this form of use case allows you to track exceptional
and alternate courses of action, it is especially suited for tracing the level of detail that is
necessary for the full exploration of functional requirements. Figure 2.9 shows a use case
template for a numbered scenario.

Use Case Name: Player Starts Game

Requirement(s) Explored: 1

Player (Actor) Context (Role): Player

Precondition(s): Game is installed and ready to play.

Trigger(s): Player selects game-start action.

Main Course of Action:

1. The player selects the game-start action.

2. The system requests that the player select a profile.

3. The player selects a profile.

4. The system loads the profile.

5. The system displays a message to the player that tells him that
play can begin.

6. The player acknowledges the message.

7.The player begins playing.

Alternate Course(s) of Action:

3a. The player does not select a profile.

3b. The system chooses a default profile.

6a. The player chooses to exit the game before playing.

6b. The system asks the player if he wants to save his profile.

6b1. If the player responds yes, the system saves the profile.

6b2. If the player responds no, the system exits without saving the profile.
6c¢. The system saves the profile.

6¢1. The player chooses not to save the profile.

6d. The system exits.

Exceptional Course(s) of Action:
6a. The system crashes when the game begins.
6b. The player turns off the computer.

Figure 2.9
Employer scenario use case for requirements analysis and exploration.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

57

58

Chapter 2 = Requirements—Getting the Picture

Practices and Explanations

In Figures 2.8 and 2.9, the main course of action is the course of action that usually occurs.
The alternate courses of action are those that diverge from the central course of action but
do not represent failures of the game. The exceptional courses of action provide informa-
tion that proves useful during test scenarios. You can relate use cases to each other through
generalization or specialization (include) relationships and composition (extend) rela-
tionships. Use cases usually document less than 15 steps. If they become longer, you might
want to reduce their scope and create more specific use cases. One use case can use one or
more other use cases. If you want to indicate a connection, just name the use case in the
step and underline it for emphasis.

Approaches to Using Use Cases

To expand a bit on the way that the use case templates featured in Figures 2.8 and 2.9
might be used, note that you have options. If you do not know what requirement to state,
you can begin by imaging a context of. You can then relate the sequence of actions you
think might unfold in this context as a use case. The use case helps you identify how the
system must function if it is to support the sequence of actions.

You can follow inductive or deductive approaches to requirements discovery and refine-
ment. The use case can serve as an inductive approach to requirements discovery if you
collect details and from the details discover a requirement. You can also follow a deduc-
tive approach. In this instance, you might begin with a requirements statement and then
write the use case as a way of seeing whether the requirement fits into a context of use the
system provides. If it does, then you confirm the need for the requirement.

One of the central purposes of requirements exploration and refinement is to teach your-
self what it is that you want to build. You must learn about the product. If completing use
cases seems tedious, remember that every time a use case allows you to alter the wording
of a requirement (if you use the approach offered here) or to spot a detail you did not at
first recognize, it has done its job. The purpose of a use case is to force you to expand and
refine your understanding of the system.

Exploration

Requirements exploration begins with trying to name the features that you must support.
Your starting places are the narratives you have of the game, the many details about the

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Exploration

game that the game specification document includes, and specifications from any legacy
game that you want to use as the basis of the new game. Other sources of information
might be at hand, of course. For example, you might turn to an expert user of the type of
game you want to develop, or you might bring in notions that are wholly new and untried.
During exploration, you are doing precisely what the word implies: You are looking
around, investigating, prodding, trying to see in every candidate requirement whether you
have found something you want to make a part of your game. Figure 2.10 illustrates some
of your primary exploration tasks.

T Exploration
l
." Generate | TOR Create Candidate
' Candidate Classes Chart Requirements Update SRS

Create Scope
Use Cases

Figure 2.10
Exploration involves use cases and candidate requirements.

Using Use Case Diagrams and Scenarios

One of the first use cases to develop for a game is called the context use case. This use case
more or less reflects the activity you find in the game summary portion of the game
design document, but it excludes as much detail as possible. The goal of the context use
case (represented here with a diagram) is to show the outer scope of the game. Other use
cases can then be created to explore the inner scope of the game.

Figure 2.11 shows the context use case developed from a combination of the details pro-
vided in the game design document and the summary narrative given earlier. As you can
see, the use case diagram conveniently summarizes the major occasions of player interac-
tion with the game. It shows the start and end of the game. It also shows that the player
can quit the game and restart it.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

59

60

Chapter 2 = Requirements—Getting the Picture

Play Ankh

Select from
Profiles

Save Game

Battle Guards in
Streets of
Alexandria

Set Up
Profile

Vanquish Defenders
and Soldiers at
Gates of Memphis

Conquer
Priests in
Temple of Isis

Guards of
Dashur

N

Overwhelm
Evil of Uheset

Subdue Priest’s

Player
) Overcome
Prevail Underworld
Over Oasis
Enter and Conquer
Triumph in Temple at
Inner Sanctum Thebes
Figure 2.11

A use case context diagram helps scope the game.

The Sixty-Seconds-of-Play Use Case Diagram

Whereas you can establish the outer scope of the game with the game context use case dia-
gram, you can establish the inner scope by creating a use case for the sixty-seconds-of-play
narrative. Figure 2.12 shows one use case of several that you can create to capture the
events given by sixty seconds of play. Note that even though the use case is selective and
still fairly general in its detail, it still begins at a much more in-depth level than the game
context diagram. You can unfold a dozen such use cases from the context diagram with

relative ease.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Exploration

Battle Guards of Alexandria

Read Story
of Hero

Hear Story
of Hero

Q View
* Guards
Player Battle
Guards
Enter New
Level
Figure 2.12

A use case diagram summarizes sixty seconds of play.

Making a Starting Specification List

From the start of your project, develop both use cases and a requirements list. Generally,
developers either list requirements or use cases. It’s best if you do both. You can begin list-
ing your requirements in section 3 of the SRS, and you can record use cases in an appen-
dix of the SRS. You can also maintain this as a separate document that you fold into the
SRS as an appendix later on.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

61

62

Chapter 2 = Requirements—Getting the Picture

You can begin making requirements statements by making statements about what the sys-
tem should do. Obviously, you can interview people. You can read the game design docu-
ment over and over again. You can play the game you want to modify. Whatever you do,
you formulate statements about what the game should do. You then begin a process of
refining these statements. You must test to see whether the statements make sense and are
complete. Use cases enable you to expand basic statements because they force you to place
the basic statement in contexts of use. The context of use shows you whether the state-
ment is valid or whether it implies that other things need to happen for it to occur.

When you begin to create sentences for your requirements document, word them in the
active voice, use the verb “shall,” and try to make them pertain to only one feature at a
time. Try to use only two subjects—player (user) or system (software). Avoid wording that
conveys assumptions about implementation.

Here are a few requirements that might be generated from the previous use cases:

<Req_1> The software shall have the capability to save the game state from
a menu.

<Req_2> The software shall have the capability to return to a saved state by
loading a file.

<Req_3> The software shall have the capability to associate user profiles
with saved game files.

Notice how making a statement about the functionality of the system is a combination of
analysis and guessing. The point is that you have to begin somewhere. If you write your
statement as a requirement, you are suddenly in the position to begin refining the state-
ment. The important thing is to formally make the statement.

After you make the statement, the hard part is over. Then refinement begins. You can
make refinement easier if you take a little care up front about how you make your state-
ments. There are a few problems with the statements presented earlier. For example, in
requirement 1, the expression “from a menu” assumes implementation details. Likewise,
“loading a file” in requirement 2 designates only a capability and yet calls for using a file.
Requirement 2 also implies using a file. You can express the requirements more actively if
you explicitly mention the player. Here are slightly reworded versions of the three state-
ments given earlier:

<Req_1I> The player shall have the capability to save the game state.

<Req_2>The software shall have the capability to return to a saved state by
loading saved information about the state.

<Req_3> The software shall have the capability to associate user profiles
with saved game information.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Exploration

These three candidate requirements are tentative. They are a first go at something that
requires much work to refine. The next step for each requirement might be to create a use
case to test the statement in a context of use. You begin with the narratives, find statements
that summarize what you think the system should do, generate use cases to test the state-
ments, and at last arrive at a full set of statements to describe the functionality that you
observe. At first, the process is slow and painful, but as you fall into a pattern of work, you
pick up speed.

Finding Potential Class Names

From the start, the assumption is that you are using object-oriented programming tech-
niques. For this reason, you will be using classes to encapsulate the behavior your
requirements specify. You should try to name classes during the requirements exploration
phase. This chapter provides a few ways to do this. Classes are generic names you apply to
the services you want to create. The sooner you can begin thinking about general ways to
name collections of functionality, the better. On the other hand, it is important to keep in
mind that the purpose of requirements exploration is to explore requirements, not to start
the design effort. (See Chapter 4 for detailed discussions of design.)

Two approaches to discovering candidate classes are as follows:

m Analyze narratives for nouns that might qualify as class names.

m Search candidate requirements for prospective classes. In this case, it is assumed
that you might be bringing legacy material into play.

You have already glimpsed what is involved in picking through a narrative to find nouns.
After you have created a list of nouns, you can proceed to analyze the list to discover
whether the nouns can be generalized. For example, if you find nouns such as priest,
guard, minstrel, dancer, and merchant, you can probably arrive without too much trouble
on a summary noun, such as character. You are then in a position to imagine contexts in
which a character can be used. This helps you with both your requirement statement and
a tentative name for a class.

In the approach shown here, both the requirements statement and the narrative analysis
approach are used to find candidate classes. You can begin naming classes fairly early in
the game. When you generate class names from requirements statements, the best
approach is to use a TOR chart to explore the initial usefulness of the names.

Using a TOR Chart

A TOR chart provides an immediate way to explore the validity of a candidate require-
ment. Figure 2.13 illustrates a TOR chart for two of the previous requirements. The con-
cepts behind a TOR chart are pretty simple. In the left column, you can write the require-
ment in full or substitute the number with which you designate the requirement. In the

TEAM LING - LIVe, Informative, Non-cost and cenuine !

63

64

Chapter 2 = Requirements—Getting the Picture

Task column, state the requirement as a task. In other words, anticipate the basic function
that the requirement seems to call for. What do you need to accomplish?

The next column might seem a little odd. As has been noted, it’s good to push ahead with
object-oriented thinking as early as possible. For this reason, there is a tentative Objects
column. You can use this column as an opportunity to try to name the collection of func-
tionality that you think will answer your requirement. In Figure 2.13, for example, the
requirement to save the game might be met with an object called SaveGame. This need
not be anything definite at this point, but you can still take a first shot at creating a name.

You can go even further. In the Remarks column, you can say what you think the tenta-
tively named object might accomplish relative to the task you have named.

When you create the TOR chart, everything is flexible. Even if you feel as though you are
making up names and classes, you are still moving in the right direction.

Requirements(s) Task(s) Object(s) Remarks

1 Saving game GameState 1. Initialize game state
2. Save changes

Replay 1. Use game state
2. Play slower
3. Return to main menu

Action 1. Track character interactions
2. Track map interactions
3. Receive action updates

2 Restore game GameState 1. Load game state data
settings 2. Apply instant changes

Figure 2.13
A TOR chart allows you to tentatively name requirements and candidate classes.

Analysis

Analysis is sometimes used to designate the entire process of requirements engineering.
Here, analysis is used to designate the activity of subjecting candidate requirements to
fairly intensive procedures that reveal weaknesses, redundancies, and gaps. The primary
artifacts of this phase of activity are use case diagrams, use case scenarios, and activity dia-
grams. If you have begun work on a TOR chart, it might also be a deliverable of this phase.
The emphasis, however, should be on perfecting the requirements though use cases and
activity diagrams. Figure 2.14 reviews activities of analysis.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Analysis

| Analysi
A\ A\ \4 alysis

Create Use Analyze Use Case Create Use
Case Diagrams Scenarios Case Scenarios
\ \ 4 \4
Figure 2.14

Analysis refines requirements and explores relations.

Using Use Cases to Analyze Actions

You analyze a requirement after you have initially formulated it based on the information
you have elicited during the first phase of requirements engineering. Analysis of a require-
ment involves searching the wording of the requirement to see whether it contains the
information the developers require to construct the feature that the requirement specifies.
Analysis also involves examining whether the requirement depends on other require-
ments or should be broken down into further requirements.

One approach to analyzing a requirement is to place it in the context of play. You can then
break down the context of play into a sequence of actions, and with the sequence of
actions, you can generate a use case. At times, you might find that the context of play has
a number of alternative paths. One path occurs most often. Analysts refer to this central
path as the basic course of events or happy path. Analysts refer to other paths as alternate
and exceptional paths. An alternate path is one that differs from the basic course of events
but presents no problems. An exceptional path is a path in which a problem occurs.
Exceptional paths are essential in the development of test cases.

To proceed with the analysis, you start with a use case scenario and work through the
sequence of events that the scenario captures. As you go, your goal is to discover in what
ways the requirement might imply dependencies, represent redundancies, inadequately
cover the actions present, or fail to make sense. If the requirement does not cover the
action, others should. If others do not, you have found a gap. Consider the scenario illus-
trated in Figure 2.15.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

65

66

Chapter 2 = Requirements—Getting the Picture

Use Case Name: Track Player Play

Requirement(s) Explored: 1, 2

Player (Actor) Context (Role): Player playing

Precondition(s): Game started.

Trigger(s): Timer issues message.

Main Course of Action:

1. The player plays the game.

2. The game tracks each action the player performs.
3. The player stops the action.

4.The player requests a replay of the action.

5. The system replays the action.

6. The action replay ends.

7. The player resumes play.

Alternate Course(s) of Action:

Exceptional Course(s) of Action:

Figure 2.15
A use case scenario traces a sequence of events.

In this case, you are analyzing requirements that specify features that allow the user to save
the state of the game and play it back (listed above as requirements 1 and 2). The scenario
allows you to view each requirement in a context of use. The scenario traces a series of
events from beginning to end. When you trace the series of events, you are seeking both
to confirm the need of the requirement and to see whether it covers the actions listed.
Does the requirement need to be reworded to cover the actions in the scenario? What
other requirements are necessary? Are the other requirements specified? Is a requirement
missing? Does the requirement still make sense now that you have placed it in a scenario
in which it has been conceptually tested?

Although most people prefer to write scenarios, some people use diagrams to start things
out. Diagrams allow you to capture actions you think might belong to the scenario with-
out having to figure out from the start exactly when they occur. Figure 2.16 shows a use
case diagram with these events.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Analysis

Identify Player

Play Game =)--------------ee- Record Action
Stop Action

Request Replay

Player Replay Action

Retrieve Action

View Replay
Figure 2.16

Use a use case diagram to explore relations.

Let’s consider again the wording of one of the requirements:
The player shall be able to replay game actions.

Using the scenario in Figure 2.15 and the diagram in Figure 2.16, you can extract several
angles of functionality from the wording of the requirement. A few are as follows:

= The player interacts with the view of the game.

m The player plays the game according to the player’s profile.

® The system records the player’s play.

® The system allows information about actions to be stored.

m The system coordinates activities involved in stopping, starting, and replaying the

action.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

67

68

Chapter 2 = Requirements—Getting the Picture

As it develops a requirement, the development team does not attempt to name the spe-
cific interface features that support the requirement. Rather, the point of the analysis is to
investigate what type of behavior must be supported and to examine whether the named
requirement does, indeed, have a context of use and accounts for this use without having
to be reworded. It also allows you to see whether it’s necessary to add requirements.
Likewise, if you were to find that two requirements generate the same scenario, then you
might want to eliminate one of the requirements.

Activity Diagrams

If you cannot understand how a sequence of events unfolds, you can use an activity dia-
gram to supplement a use case. The activity diagram allows you to view how action flows
from one event to another. The activity diagram is especially useful if you want to capture
simultaneous actions—something that a regular flow chart does not allow you to do.
(Chapter 3 provides a detailed discussion of action diagrams.) Figure 2.17 shows how the
events represented in the use case shown in Figure 2.16 can be illustrated with an action
diagram. As simple as it is, the diagram forces you to specifically identify the order of the
actions that make up the scenario.

(Play Game)—PC Stop Action View Replay)—»(Return to Play)

Figure 2.17
You can use an activity diagram to analyze the flow of use case events.

Refinement, Verification, and Validation

Refinement involves tuning the requirements list so that dependencies and priorities
become visible. Likewise, refinement is closely associated with verifying and validating
requirements. At this point, you can also put in place some formal measures for baselin-
ing requirements. A requirements matrix is a handy tool for keeping track of most of the
information that emerges during the refinement phase.

When you verify requirements, you check to make certain that you are building the sys-
tem in the right way. When you validate requirements, you check to make certain the
requirements specification thoroughly addresses the requirements that the customers
have presented. If you view the game as a problem statement, validation ensures that you
have comprehensively addressed the scope of the problem you have decided to solve.
Figure 2.18 illustrates the refinement phase.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Refinement, Verification, and Validation

A

\ 4

Refine Candidate
Requirements

Validate SRS '
A\ 4
Create Matrix
Listing

Figure 2.18
Refinement involves verification and validation.

It is good engineering practice to validate and verify requirements before proceeding to
the next phase of system development, which is system design. When you have developed
the requirements to the point that you think they represent a complete and accurate
description of the problem, you establish your first baseline for the SRS. A baseline is a
controlled version of the document. After establishing the first baseline, you update the
requirements document only through formal measures, such as group reviews or individ-
ual change requests.

Given the baseline of the SRS, you can develop a test plan. The test plan is a separate doc-
ument that has its own set of priorities and complexities. This book examines test plans
in Chapter 11, “Evident Evil—The Art of Testing.” (You can also see the example docu-
ments on the CD.) In the test plan, you show how you will test the functionality you have
specified in the SRS. Two key components of a test plan are test cases and a requirements
matrix. The test case documents how you intend to verify and validate requirements. The
requirements matrix ensures that you can trace the work you perform as you implement
and test the functionality that your requirements specify.

Using Use Cases for Tests

At this point, there is no need to extensively discuss test cases for requirements, for
Chapter 11 discusses testing in detail. However, you should develop at least one test case
for each requirement listed in the SRS. The exceptional and alternate paths discussed ear-
lier in this chapter are important parts of test scenarios. Although the basis for the test
case can be the basic course of events given in the use case you develop to analyze the
requirements, you must develop at least one exceptional course of events for each basic
course of events.

Each requirement you list in the SRS should have a reference to a test case. To accomplish
this, include a requirements matrix as an appendix to the SRS.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

69

70

Chapter 2 = Requirements—Getting the Picture

Using a Requirements Matrix

You can append a requirements matrix to the SRS. A requirements matrix is a tabular rep-
resentation of the requirements you name in the SRS. Figure 2.19 illustrates a sample
requirements matrix. Notice how the matrix ties together most of the artifacts created
during the requirements engineering phase of the software development process. (See
Appendix D or the CD for a complete example.) You see the requirements number, so you
can trace information to the SRS. On the other hand, you see a test case number, so you
can trace information to the test plan. If you have an appendix in the SRS that shows use
cases, the matrix provides use case references. On the other hand, the list of classes points
to the TOR chart. You can expand the matrix if you want to include other information.
Two additional columns might list the names of code files and design stripes. (See Chapter
4.) Also, if you hyperlink the cells of the matrix, you can more easily access named items.

Req No. Stat Title Use Case Ref | Test Case Ref Dep Priority Class Ref
CPlayer
1 0% | Start Game SGo1 SGTof 1 hlomer
CWorld
Figure 2.19

Include a requirements matrix in an SRS appendix.

Refining Specification Dependencies

Notice the columns in Figure 2.19. One column is titled Stat (for Status). A second col-
umn is titled Priority. These two column titles affect refining specifications. Although the
status of a requirement has more to do with managing the project than with refining the
requirement for implementation, it remains important to include discussion of it at this
point to prepare for future development efforts. The status of a requirement is the extent
to which the functionality that it specifies has been constructed.

When you consider status, you also need to consider what priority the requirement has
during the construction phase of development. Generally, there are three ways to rate or set
the priority for a requirement. Table 2.4 describes these rankings. As shown in the table,
these rankings can be coded as numbers. For example, Essential is coded as priority 1.

One fairly heavy factor in determining the priority of a requirement is whether other
requirements depend on it. If a first requirement depends on a second, then the
construction of the functionality for second must be completed before the first can be
completed.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Anticipating and Managing Change

Table 2.4 Priorities for Requirements

Priority Description

Essential This type of requirement is considered a part of the critical path of the product.
If it is not completed, nothing else can be completed.

Desired This type of requirement is not considered a part of the critical path. Often, such

a requirement is associated with nonfunctional features. If the requirement is
not a nonfunctional feature, it has no dependencies and could be dropped
without creating difficulties.

Secondary This type of requirement is something that you discover has no bearing on the
critical path of the project and does not add much that is important to the pro-
duct. It is so inessential, in fact, that you try to implement it only if you have
time to spare after all essential and desired functionality are implemented.

Anticipating and Managing Change
Requirements change during the development process. Changes present challenges if you
are not ready for them. To control changes, you can use the following tools and strategies:

= Change procedures. Put in place a set of rules to follow every time you change the
wording of the requirements document.

= Review. At regular intervals, review suggestions for changes. Make no changes to
the baselined document unless you have reviewed the changes. (Chapter 15, “Team
Work,” provides discussion of how to do reviews.)

= Documentation control. Place the requirements in the same control system you
use for your code.

= Updating the matrix. Continue to update the matrix so that you can easily move
from the requirements specification to other documents.

The sections that follow review some approaches to these activities. Chapter 10 discusses
these topics in the context of software configuration management.

Change Procedures and Reviews

You can easily establish procedures for change with a single document containing a num-
bered list. You tell the members of the team what to do when they want to make changes.
In addition, it is appropriate to designate a change control coordinator. This is someone
who has responsibility for knowing document ownership, numbering conventions, review
schedules, and procedures for submitting requests for change.

Reviews are the most convenient way for a small team to exercise change control proce-
dures. Generally, each artifact in a requirements effort is assigned to a given individual.
The person responsible for the artifact develops it in accordance with the findings of a

TEAM LING - LIVe, Informative, Non-cost and cenuine !

71

72

Chapter 2 = Requirements—Getting the Picture

team. At scheduled intervals, the team reviews the work and approves the changes that
have accumulated since the previous review. The coordinator can keep a running tally of
who owns what and when reviews take place.

Document Control

The SRS is the most important document in the requirements analysis effort. It contains
the primary list of requirements and, in an appendix, the use cases involved in the require-
ments analysis effort. Other artifacts also result from the requirements analysis effort.
These include the requirements matrix and the game design document.

Document control is best accomplished using some type of software that is designed to
control changes. A source control application can be used for document control. Chapter
10 provides greater detail on source control issues.

Because requirements engineering is a process of discovery, number your requirements
and do not allow the numbers to be changed. Number requirements by using a number-
ing system that makes each requirement clearly identifiable and unique. Add a subsystem
identifier as a prefix to the number. You can also number use cases. Number use cases with
a naming convention that is similar to what you use for your requirements. If you create
a requirements matrix and place it in an appendix of the SRS, you will have a convenient
way to trace the development activity relating to each requirement.

Conclusion

Requirements allow you to capture the scope of your development project. When you
develop a game, you approach the game as a problem. You define the problem through
requirements engineering. Requirements engineering allows you to precisely define the
scope of your development effort, but it also allows you to know specifically what func-
tionality you must implement to support the features that make up your game. During
the requirements engineering phase of the product lifecycle, you can establish the criteria
you will use to test the functionality of your game. The work you perform during the
requirements engineering phase of the project can be captured in several artifacts. Among
these are the software requirements specification (SRS), the use case, and the TOR chart.

For further reading on requirements engineering, you might find the following resources
useful:

Cockburn, Alistair. Writing Effective Use Cases. Boston: Addison-Wesley, 2001.

Dulak, Daryl and Eamonn Guiney. Use Cases: Requirements in Context. New York: ACM
Press, 2000.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Conclusion

Wiegers, Karl E. Software Requirements, Second Edition. Redmond, Washington:
Microsoft Press, 2003.

The work you perform during the requirements phase lays the groundwork for the design
phase of the software engineering effort. During the design effort, you begin the work of
trying to solve the problem you have scoped out during the requirements engineering
effort. If the work you have performed during the requirements effort has been done well,
you can begin design work with minimal rework.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

73

CHAPTER 3

A TutToriAL: UML AND
OBJECT-ORIENTED
PROGRAMMING

representation of something complex. A model makes it possible for those who

want to build a system to visualize the system. It’s a way to specify what the system
is to do and to guide the construction of the system. A model creates a common language,
or a common way of understanding. If you put a model in place, your project can move
forward with force and momentum that are otherwise beyond your reach.

3 Imost all successful software systems are built from models. A model is a simple

The Unified Modeling Language (UML) provides a set of elements that allow you to
model software systems. This chapter covers some of these elements, which are examined
on three levels: diagrams, modeling elements, and views. In addition, this chapter covers
several concepts that are associated with object-oriented design, which is important in the
use of the UML.

Even with such a limited set of topics, this chapter has a lot to explain, such as the following:
= Origins of the UML
= Why and when to use the UML

m Elements and relations

Object-oriented concepts

® Diagrams considered basic to the UML

UML History

The UML “unified” what amounts to dozens of modeling languages that software design-

ers, engineers, and analysts had developed independently during the middle and late

decades of the twentieth century. The unification culminated in the work of the Object

Management Group (OMG), which in 1997 adopted the UML as a standard (Version 1.1).

In 2003, the OMG approved Version 2.0. 75
TEAM LING - LIVe, Informative, Non-cost and cenuine !

76

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

If you access the OMG UML site on the Internet (http://www.uml.org), you can obtain
most of the information you need to take your study of the UML far beyond the scope of
this book. (Also see the list of books at the end of this chapter.) On the other hand, almost
any understanding of the language is likely to provide you with the ability to communi-
cate with far more people than you would otherwise when talking about software.

Even if one organization governs the UML’s development, it is important to realize that
the UML is not associated with any one tool or methodology. Many software modeling
tools incorporate its elements. Likewise, it is important to remember that the UML is an
extremely useful medium for communication in situations in which you want to draw
informal diagrams to illustrate ideas you have about software components and systems.
In other words, although it is a good idea to use the UML properly, it is also a flexible,
completely customizable medium of communication.

The UML is a general-purpose modeling language. To fulfill its purpose, the UML offers
a set of diagrams, views, and modeling elements that help you do the following:

m Gather requirements

= Analyze the requirements you have gathered

= Design software using your requirements

= Document the software you have developed

= Develop test cases

m Plan product releases

= Discuss and conceptualize software

A UML Diagram and Its Elements

This chapter covers nine UML diagrams. To begin, look at Figure 3.1, which illustrates a
common UML diagram—a class diagram.

CCharacter
{interface}

UML class
diagram and
‘| class element

CProfile

AssertStrength():void

............ E........... A A

i <<implementation>>:

CHero CFoe Name

Attributes
Operations

AssertStrength():void| | AssertStrength():void

S
A4

Figure 3.1
A UML diagram explores relationships among classes.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

UML History

It is not important now to go into the meaning of the elements represented in Figure 3.1.
Note, however, the following general notions, which Table 3.1 explains in detail.

m The rectangles that are divided into three parts are examples of elements that rep-
resent classes. Each class element provides the class name, class attributes, and class
operations.

m The lines with the open arrows, closed arrows, and diamonds are examples of ele-
ments that represent relationships.

m The bold italic of CCharacter illustrates an adornment.

= The numbers on the lines illustrate multiplicity (which you might know as cardi-
nality).

m The curly braces enclosing “interface” show the use of a property.
m The actual diagram is a class diagram.
® The box with the folded upper-right corner is a note.

m The diagram provides a logical, static view of a system of classes.

If this is your first exposure to the UML, these terms might seem a bit alien. Don’t be
discouraged. The elements that make up the language are few in number and easy to iden-
tify. You'll learn more about them in the discussion that follows.

Why Bother with Symbols?

Why bother learning about a set of symbols for communicating about software? The first
part of the answer goes back to the notion of modeling things. Almost every successful
software system has been modeled. A model is an abstraction of a real system. The UML
offers you what amounts to a simple set of tools for modeling. Central among these tools
are the diagrams, which are also known as artifacts. The artifacts provide you with a ready
way to quickly describe the system you are working on.

Description is the second big factor. It’s a key issue, in fact, when it comes to software
design and testing. To view how this is so, consider what it would be like to verbally
describe the software system represented in Figure 3.1. The description might go some-
thing like this:

From a logical point of view, the class system consists of four classes:
CCharacter, CProfile, CHero, and CFoe. CHero and CFoe have an attribute or
data member that is an instance of the class CProfile. The relationship is one
of composition—strong association. CCharacter is an abstract class that is
used as an interface, and its interface consists of one operation—
AssertStrength()—which is overridden in the two implementations of
CCharacter: CHero and CFoe. The return value of AssertStrength() is void.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

77

78

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Somewhere deep down, you know that this is really talking about a computer program—
lines of code. If the computer program exists, you might set aside all this discussion and
illustration and instead refer to the code. If implemented in C++, the code might appear
as something along the following lines:

//declaration CProfile

class CProfile
{
/.
}s
//declaration CCharacter as abstract class—-interface
class CCharacter
{
protected:
CProfile *m_pProfile;
public:
//pure virtual operation
virtual void AssertStrength() = 0;
}s
class CHero: public CCharacter
{
public:
//overridden version of operation from parent class
void AssertStrength();
}s
class CFoe: public CCharacter
{
public:
/loverridden version of operation from parent class
void AssertStrength();
}s
//implementation..
CFoe::CFoe()
{
//aggregated instance of CProfile
m_pProfile = new CProfile();
}
//implementation..
void CFoe::AssertStrength(){/*..*/}
//implementation..
CHero::CHero()

{
//aggregated instance of CProfile
m_pProfile = new CProfile();

}

//implementation..

void CHero::AssertStrength(){/*..*/}

TEAM LING - LIVe, Informative, Non-cost and cenuine !

UML History

If you are not yet completely comfortable with the syntax of C++, don’t worry. The pre-
vious code sample fairly accurately implements both the diagram and the description, but
the implementation is not what is important—not here, anyway. What is important is the
sheer bulk of space and amount of time required to represent and communicate the idea
when only the code is at hand to illustrate the idea. Consider what happens if the system
includes 30-100 classes, each containing hundreds or thousands of lines of code.

The fact of the matter is that the program cannot be its own model. To model a program,
you need something other than the program, and to model something effectively, you
need a set of modeling conventions that everyone can agree on to mean the same thing
and that everyone uses in roughly the same way. Explaining and showing the implemen-
tation are good, but being able to draw diagrams is better.

As an experiment, try returning periodically to this part of the book. Look at the diagram,
read the prose passage, and read the code. Yes, perhaps the UML is vague at this point, but
almost anyone who conducts such an experiment after a little exposure to the UML
reports that the diagram presents the same picture as the prose and the code, but it
requires only a fragment of the time. Add to this that the diagram ends up being able to
communicate the purpose and flow of the activity in the system with much more clarity
than either the prose or the pseudocode.

note

Chapter 10, “Control Freaks and Configuration Management,” provides a discussion of naming
conventions. When we show the code for a diagramed class, we add a C to the name of a class. An
example is CMesh. The C stands for class. The letter m and the underscore indicate that the variable
is @ member of the class. An example is m_intXCord.

Starter Terms

The most effective way to become familiar with UML is to use it. Toward this end, we can
briefly list some of the main terms and topics of this chapter. Look at Table 3.1. These
terms refer to general UML features. We’ll build on these features from this point forward.

Table 3.1 UML Starter Terms

General Term Description

Relations Represented by solid or dashed lines that might be capped with an open
arrow, a closed arrow, or a diamond. They indicate ways that system
entities communicate with each other.

(continued on next page)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

79

80 Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Table 3.1 UML Starter Terms (continued)

General Term

Description

Elements

Diagrams

Views

Note
Adornments

Extensions

Properties

Multiplicity

UML Diagrams

Generally, elements fall into three groups: symbols, lines, and labels.
Symbols stand for such things as class rectangles and object rectangles.
They also represent other things, such as actors and use cases in use
case diagrams. Lines stand for associations, links, dependencies, and
transitions in state transition diagrams. Finally, labels stand for such
items as names and roles.

The nine diagrams discussed in this chapter. Diagrams offer ways to
illustrate systems or parts of systems. The diagrams we examine are as
follows: class, object, state, sequence, collaboration, activity, component,
and deployment.

Ways to look at software systems or system components. They are as
follows: component, logical, deployment, use case, and concurrency.

A rectangle with its upper-right corner folded over.

Special ways of enhancing the meanings of relations, elements, and
diagrams. Examples are underlined words, bolded lettering, and
characters that indicate scope, such as +, -, and #.

Ways you can customize the UML for your own purposes. One of the
most important extensions is called a stereotype. You can assign a
specific name to almost anything that the UML offers if you use a
stereotype, which you create using guillements (angled brackets,
pronounced Gill-EH-ma). Example: <<special characterization>>.

Ways to define anything you represent in a UML diagram. To do this, you
enclose your definition in curly braces. Example: {abstract}.

A way to show the cardinality of things. The figure that follows shows a
many-to-one relationship between the two boxes. Read the star as
“many.”

[H——]

As was mentioned before, the UML offers several diagrams that you can use as a model-
ing framework for your software. Examine Table 3.2 for a summary.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

UML Diagrams

Table 3.2 UML Diagram Inventory

Diagram
Name

Description

Use Case

Activity

Class

Object

State Chart

Sequence

Collaboration

Component

Package

Deployment

A use case diagram depicts the system from the perspective of the system user
(also called an actor). It shows how the user uses the system to derive some type of
beneficial service from it. This diagram can contain one or more use cases. Some
use cases extend others, whereas others include others. Some generalize or special-
ize others.

An activity diagram provides an excellent way to explore use cases. It resembles a
flow chart and has things in common with state chart diagrams.

A class diagram consists of elements that depict classes and the relationships
among classes. Some classes generalize or specialize other classes. Other classes
are composed of objects of other classes. The relationships among classes can be
described as association, aggregation, or composition. A class diagram provides a
static view of a system.

An object diagram consists of elements that depict objects and the relationships
among objects. Like a class diagram, a generic object diagram might represent a
system statically or dynamically.

Suppose that you want to see how a single object changes—how its state changes.
Say that it starts with a given value set to 0 and, after a time, the value grows to
1,000. If you want to see how this happens, you investigate the transitions in its
state.

Like a collaboration diagram, a sequence diagram is an interaction diagram. Objects
in a given system communicate with each other through messages. The sequence
diagram shows the sequence in which the messages occur. It allows you to trace
the flow of the system activity. In a sequence diagram, a timeline shows the lifetime
of each of the objects in the system. Messages connect the timelines.

Like a sequence diagram, a collaboration diagram is an interaction diagram. A col-
laboration diagram shows how objects communicate with each other rather than
the sequence in which they communicate with each other. It provides a way to
investigate the logic of the system and the roles of the objects that the system uses.
This diagram allows you to depict the way the architectural components of the sys-
tem have been grouped. Other terms for components are frameworks, modules, and
patterns. Along with the deployment diagram, this provides an implementation view
of the system.

Used in a design document, this diagram can show collections of classes. We use it
to show the stripes of Ankh. Package diagrams can also depict modules, patterns, or
frameworks.

If you need to show how you are going to install the different parts of a game, you
can use a deployment diagram. Assume, for example, that you have a distributed
game—one part goes on the client machine, and the other part goes on the server.
Along with the component diagram, this provides an implementation view of the
system.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

81

82 Chapter 3 = A Tutorial: UML and Object-Oriented Programming

note

A class diagram depicts only classes. It does not show the instances of the classes. Such a diagram
is static. When the instances of the class (in other words, objects) come into existence or go out of
existence doesn’t matter. What matters are the relations between the classes without respect to
time. When an object diagram shows only classes, it is static. On the other hand, other diagrams
show changes through time. Among these are state chart, sequence, and collaboration diagrams.
When a diagram shows changes over time or changes in state, it is dynamic.

The sections that follow go into detail in the discussion of each of the diagrams that Table
3.2 lists. For now, you might want to flip ahead and glance at the diagrams. In fact, you
should review Table 3.2 several times.

The diagrams are tools. Whether you derive benefit from the UML depends on whether
you can use the tools it offers. Grand conceptualizations about how and why you should
use the tools are secondary.

Know Tools by Use, Not Definition

Keep in mind that the UML is an extremely flexible standard. For this reason, think of the diagrams
as tools that allow you to perform different types of work. To review a bit:

m Use a use case diagram to gather and explore requirements for purposes of design or
testing.

m Use an activity diagram to explore the scenarios of use cases.

m Use a class diagram to identify classes and see how classes relate to each other.

= Use an object diagram to see how one object communicates with another.

m Use a state chart diagram to explore how the attributes of an object change.

m Use a sequence diagram to fully explore a use case by tracing the order in which objects
send messages to themselves or each other.

m Use a collaboration diagram to view the logic of the system and the way that objects send
messages to each other.

m Use a component diagram to explore whether and how subsystems exist within your
game product.

= Use a deployment diagram to figure out how to set up the installation package for
your game.

Together with the discussion of the diagrams comes a flood of new terms. One thing you
can take for granted—the UML goes on and on. This chapter covers a fair degree of detail,
but keep in mind that full documentation of the UML requires, at a minimum, many more
pages than are available here. The end of this chapter provides a few good reference works.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Use Case Diagrams

Use Case Diagrams

A use case diagram allows you to show how someone might use a system. Such a diagram
is especially helpful during the early stages of a project, when you are trying to develop or
analyze requirements and figure out test criteria for the requirements. Because it is con-
cerned with what people do, a view of the system created with use case modeling is some-
times referred to as a functional view of a system. (For specifics on developing functional
requirements, see Chapter 2, “Requirements—Getting the Picture.”) In other words, you
analyze the system in terms of what it is expected to do.

Modeling with use cases involves use case diagrams. However, before getting involved in a
discussion of creating diagrams, it is important to talk first about use cases specifically. A
use case is a description of a sequence of actions that a system performs. On the other
hand, a use case is not a description of just any sequence of actions. It is a description of
a sequence of actions that produces a result. The result is not just any result, though. The
result has to be something that someone who uses the systems finds beneficial. The
requirements often specify the result.

note

Keep in mind that a use case is not the same thing as a use case diagram. Although the two often
are referred to as use cases, a use case is primarily something written. A use case diagram is some-
thing that illustrates a use case. Use case diagrams are tools you can employ to develop use cases.
See Chapter 2 for more discussion on writing use cases.

A use case diagram graphically
depicts how the system user expe-
riences or interacts with one or
more use cases. Because more

than one system user might par-
ticipate in any given use case, a use Q e

case diagram might also feature)\ > Battle demon
several system users. Likewise, a

Demon Attack

Identify demon

use case diagram usually depicts Player
several use cases—sometimes
dozens. To familiarize yourself
with the basics of a use case dia-
gram, look at Figure 3.2. .
Figure 3.2

An actor interacts with three use cases.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

83

84

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

As Figure 3.2 shows, you employ only a few modeling elements, as follows:

= A stick figure, which represents the user of the system (player). The stick figure is
generically called an actor. Any number of actors can participate in a system.
Although actors are usually people, they can also be external factors (such as time,
alarms, and so on) or other systems.

= Ellipses, which represent the use cases. Each use case represented in the use case
diagram is named. Generally, the names should begin with a verb (“Identify
Demon”).

= Lines with open arrows, which represent relationships between the actor and the
use cases. Such lines might also relate use cases to each other.

= A use case diagram name, which appears inside the box. Practices concerning use
case diagram names differ. You obviously don’t need to name a use case diagram if
you are experimenting, although it does help.

= A bounding box, which represents the boundary of the system. (This is some-
times considered unnecessary.)

In Figure 3.2, a stereotype beneath the actor identifies the actor as a game player
(<<Player>>). The actor is not part of the system other than as a user, so you depict the
actor outside the bounding box. Next comes the use cases—the ellipses. Each use case has
a name, as does the use case diagram. You can have just a few use cases, as in Figure 3.2,
or you can have many of them. You can also have many actors gathered around just one
use case. Everything is flexible.

The lines, as you see, are topped with open arrows that point to the use cases. Sometimes
you see the lines point the other way, at the actor—if the user receives information from
the system. In many cases, designers do not use arrows. One rule is that unless you can
think of a specific input the actor provides to the system, the line requires no arrow.

Use Cases Tell Stories

A use case is a description of a sequence of actions that the system performs for a user and
that results in something the user finds valuable. A use case diagram shows how an actor
interacts with use cases. It also shows how use cases interact with each other. Given this
start, the language tends to become loosely employed. Sometimes analysts refer to all the
activity in a given use case diagram as a use case. This is okay. Generally, what counts as a
use case or a system of use cases depends on your level of specificity or generality. How
much have you broken things down?

A good way to establish what you mean is to think of the use case diagram as a scenario,
a script, or a story. Imagine, for example, the startup session of your game. The start
screen comes into view. You are playing a role-playing game. You view the roles (charac-
ters) available to you. You select the role you like most. Then you start the game. Look at
Figure 3.3 to see how a use case diagram depicts this scenario.

TEAM LING - LIvVe, Informative, Non-cost and cenuine !

Use Case Diagrams 85

Start Session

View characters

Select character

Player

Start game

Figure 3.3
A use case diagram tells the story of the start of a game.

Here are a few points to review:

m The set of use cases in the use case diagram represents a bounded sequence or set
of activities. This set of activities is a view of the system, an arbitrarily selected
path through the possible paths that are available to the system user.

® The use case diagram has a name—a title—that appears inside the system box. The
name unifies the action of the diagram.

® A use case diagram depicts a scenario of system use. A scenario is a selected path of
system use.

What If?

What if? This seems like a simple enough question, and it is. However, at the same time,
this question identifies one of the leading roles that use cases have come to play in systems
analysis, requirements gathering, and testing. Look at Table 3.3.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

86

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Table 3.3 Use Case Diagram Roles

Question Asked

Use Cases Provide...

What if there's one path?
What if there are many paths?

What if roles are unclear?

What if there is redundancy?

What if requirements are unclear?

What if tests don’t seem obvious?

The scenario that a use case dia-
gram depicts might be one among
many. As an example of how this
is so, suppose that you change just
one use in a given scenario. In
Figure 3.3, the player selects a role
and starts the game. In Figure 3.4,
the player selects a role but
decides to exit the game.

Here, then, is an alternative path
through the set of actions that
comprises the startup use cases.
The use case diagrams depict the
two scenarios. The two scenarios
show how the same set of actions
leads to different results.

A way to visualize a set of interactions with the system
on the part of a single user of the system.

A way to visualize two or more sets of interactions that
two or more users in different roles have with the system.

A way to visualize alternative paths through the same
general sequence of actions. This becomes the basis of
test scenarios. Use cases have extraordinary value as
ways to work out test routines. Here, the important thing
to ask is, “What if it does not work?”

A way to see if you have duplicated actions when you
have laid out requirements. When you are able to see the
essential actions involved in the user’s interaction with
the system, you can easily spot when you have had the
user do things either needlessly or in duplicate.

A way to explore requirements—filling in the details you
have forgotten. When you analyze requirements, you can
use case diagrams to discover whether you are missing
requirements.

A way to work out test scenarios for any given
requirement.

Start Session

View characters

Select character

Player

Figure 3.4
A use case diagram depicts one scenario among many.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Use Case Diagrams

Use cases and use case diagrams represent events that occur in sequence and can be traced
from a start point to a stop point. There are different paths. The fact that you can explore
different paths enables you to both eliminate redundant details and fill in details that have
been omitted as you have developed a set of requirements.

note

Use case diagrams depict scenarios. However, one use case can be broken down into other use
cases, so a single use case can represent a scenario. One of the best ways to examine any scenario
is to employ an activity diagram. You will learn more about activity diagrams later in this chapter.

Different Use Cases

Use cases relate to each other in different ways. Note the following list:

m One use case can extend another use case. In other words, a use case can take what
another use case offers and add to it.

= One use case can be said to include the actions of another use case. When a use
case does this, it includes a complete use case in its own set of actions.

® One use case can inherit the properties of another. In this case, one use case spe-
cializes the actions of another case. This is called generalization.

= Use cases can be grouped together to offer a packaged set of activities.

Making an Extension

When you first lay out a use case or use case diagram, you try to think of a complete activ-
ity. This activity can be simple, such as when you select a character from a set of charac-
ters in a role-playing game. It can also be involved, such as when you are well into the
game (think of Diablo) and need to buy the right armor for your character. You might cre-
ate the following use case narrative:

Select Armor. The character goes to the armory and talks with the armory
master about acquiring armor. Armor stands in rows, and the character
selects the armor he can afford.

The use case is named Select Armor. Figure 3.5 depicts the use case and the player’s inter-
action with it.

Select armor]
Figure 3.5

Player The player interacts with the Select Armor
use case.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

87

88

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Suppose that you discover something else is possible: You can both buy and trade armor.

Select Armor with Trade. The character goes to the armory and talks with
the armory master about acquiring armor by trading old armor for new. The
character wears armor to be traded, and armor stands in rows and can be
selected. The character selects new armor that the armor master values as

equivalent to the armor traded.

This second use case extends the
action of the first. It is the same, but
it also has a new twist: the trade.
Figure 3.6 depicts how one use case
extends another.

Figure 3.6 displays a dashed line
capped by an arrow. The use case
that the arrow points to (Select

Select armor

S <<extend>>

\
Select armor
with trade

Armor) is complete. The use case | Player
pointed from (Select Armor with
Trade) adds features to the Select

Figure 3.6

Armor use case, extending it. The
stereotype (<<extend>>) tells you
explicitly what is going on. When

one use case extends another, it adds features to it while leaving it intact. What is extend-

One use case extends another.

ed here is that the transaction now includes using armor in addition to money.

Including

An alternative use case for acquiring
armor arises if you consider what it is to
acquire armor generally. Suppose that a
use case is concerned with bargaining.
Acquisition might involve paying any
named price. However, suppose that you
can also ask if a price can be lowered or
offer a lower price than the named price.
You can view the bargaining use case as a
separate, independent action, but you
can also include it in the activity of
acquiring armor if an occasion for bar-
gaining arises. Figure 3.7 shows an
include relationship.

Bargain with
merchant

»
<<include>>

kY
\

Acquire armor
Player

Figure 3.7
Acquiring armor can include bargaining.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Activity Diagrams

Generalization and Specialization

If you want to reuse use case properties, you can use class generalization. Generalization is
often referred to as inheritance. Suppose that you begin with a use case that allows the
player to renew the character’s life.

Renew Life. The player selects the healing box and the renewal option. The
player is renewed.

This use case provides a sequence of actions that restores the character’s health. Suppose,
however, that the player of a game might use a number of approaches to renewing the
character’s health. All involve the same actions, but slight differences mark each.

Renew Life with Potion. Player opens healing box and selects potion. Player
drinks potion, and he is renewed.

Renew Life with Charm. Player selects healing box and healing option.
Player confirms charm, and he is renewed.

Figure 3.8 illustrates generalization among use cases.

Renew life

Renew life
with charm

Renew life
with potion

Figure 3.8
Generalization allows two use cases to be derived from another.

note

If you create a use case that embodies all the basic properties of a number of other use cases, you
create a generalized use case. If you take a generalized use case and adapt it to some special situ-
ation, you specialize a use case. Such language is derived from object-oriented programming.

Activity Diagrams
An activity diagram possesses great potential as a way to investigate how a use case works.
In broader terms, activity diagrams illustrate workflows. This section discusses the activity

TEAM LING - LIVe, Informative, Non-cost and cenuine !

89

90

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

diagram as a way of expand-
ing on the meaning of use
cases. Keep in mind, howev-
er, that you can use activity
diagrams in almost any situ-
ation in which you want to
investigate how control of
flow passes through a system.

Figure 3.9 reviews the use
case offered before in Figure
3.4. You can work with the
use case in this section to
show at least one application
of an activity diagram.

Start Session

View characters

Select character

Player

Start game

Figure 3.9
To establish a starting point, you might examine a use case story
that unfolds something along the following lines:

Start Session. The user views the characters that can be selected for the game
role. The user selects the character. After the selection is confirmed, the user
is asked to enter a player name. The player enters a name, and the game

begins.

This story gives you a good idea of what the use case is about, but if you want to fully
explore it for requirements for design purposes, you might need to know just how the sce-
nario under study might unfold. As discussed before, there might be more than one sce-
nario. Suppose that you want to quickly grasp the different paths through the use case.

Note the following features of the activity diagram depicted in Figure 3.10:

= The filled circle designates the start of the flow (the start state).

m The circle with the dot in it represents the end of the flow (the end state).

® Solid lines with open arrows represent transitions or the flow of activity.

® The rounded rectangles are activities.

= Dark bars can be used to show synchronous flows.

m A synchronous flow stipulates that either of the actions in the flow might occur
first, but both actions must be completed before the flow can continue.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Class Diagrams 91

Gelect profile optioD

Select character
C Enter name)C sprite)

C Start game)
Figure 3.10

An activity diagram illustrates the flow of activity.

note

Developing a sequence or collaboration diagram further extends the process of investigating a use
case. Before you can accomplish this, however, you must derive classes from use cases. Class-
Responsibility-Collaboration (CRC) cards provide a ready tool for deriving classes from use case
and activity diagrams. Chapter 4, “Software Design—Much Ado About Something,” examines the
use of CRC cards in relation to activity diagrams and use cases.

Class Diagrams

If you want to model what a system contains and how the components in a system are
related, you can use a class diagram. A class diagram is a tool for static modeling. In other
words, it does not show you how the system changes. Rather, it allows you to see the com-
ponents that make up the system, and it allows you to know whether they communicate
with or depend on each other and how they relate to each other.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

92

Cha

pter 3 = A Tutorial: UML and Object-Oriented Programming

Classes are an essential aspect of object-oriented programming. Before discussing class
diagrams, then, it’s good to review a few concepts that are central to understanding class-
es and object-oriented programming. Even if this material is not new, you might want to
give it a quick reading to ensure that the terms are fresh for the discussion that follows.

note

No fixed law says that the UML must be used only with object-oriented programming models. Still,
the people who created the UML assumed that software should be designed using object-oriented
techniques. For this reason, an understanding of objects and classes is important in most discus-
sions of the UML. In recent times, patterns have increased in their importance, which means that
knowledge of classes and objects alone no longer suffices for understanding all aspects of the UML.
Chapter 7, “P Is for Pattern,” discusses patterns in more detail.

Class and Object Basics

Central to object-oriented programming is an understanding of classes and objects. Here
are a few beginning points:

Software engineers design and develop software in components.

When software engineers develop software in components, they make subsystems
that they can reuse in different ways toward different ends.

Object-oriented programming is one approach to building components.
At the basis of object-oriented programming is the object.

An object is a set of data together with the mechanisms needed to operate on
the data.

To create an object, a model of the object is created, which is called a class. A class
is an abstract (or programmer-created) data type.

A class defines the state and behavior of all the objects that can be created using
the class.

The state of an object is anything that characterizes the object: how large, how
small, what color, and so on. The attributes of a class define its state.

The behavior of an object is what the object does. For example, an airplane flies,
lands, and taxies. The operations of an object make possible the behavior of the
object. Because the operations allow only a limited number of changes to be made
in the object, they are said to be an abstraction of the possible behavior.

Every class has a name, and its name is its identity.

The operations of a class are called the interface of the class.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Figure 3.11 allows you to glimpse
some of this language in a friendlier
way. You use a class to create objects.
An object is an entity that stores
information about itself. It also con-
tains ways to change the information
it stores about itself. The information
is called its state (attributes). The
ways of changing things are referred
to as its behavior (operations).

Class Diagrams in Practice

Class diagrams illustrate classes and
static relationships. To understand

Class Diagrams

State
(attributes)

Behavior
(operations)

changeHeight @ 13223 »Height
changeWidth e oo » Width
changeColor e 9 » Color

Figure 3.11
Attributes and operations define the state and behavior
or classes and objects.

how this is so, contrast a class with a
use case. A use case is a sequence of actions. A class is a set of attributes and behaviors.

Here’s a simple way of looking at it:

® A use case (or an activity diagram) allows you to see a sequence of actions unfold.

m A class diagram allows you to see the things through which actions unfold.

A class embodies state and behavior, as discussed earlier. Another way to express this is to
say that a class encapsulates state and behavior. The state comprises the attributes. The
encapsulation is made possible by the syntax of the programming language and the con-
ceptualization of the class.

Information hiding also applies to classes. A class should not allow users to have direct
access to its data—its attributes. The attributes should be private. If users want to access
or change the state of an object, they should use special operations called accessors and
mutators. These operations should be public. The interface is the public view of what the
class encapsulates.

A term of great importance when discussing classes is cohesion. A class is a set of attrib-
utes and behaviors that address a specific type of activity—a specific need. All the opera-
tions and attributes of the class should be focused on the same set of needs—or services.
Perhaps you have a class called CMesh. A CMesh is a simple character in a game. The respon-
sibilities of CMesh are to move and appear. Table 3.4 profiles the CMesh class.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

93

94 Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Table 3.4 CMesh Properties

CMesh Attributes CMesh Behaviors

The mesh has a position characterized The mesh can be created.

by three dimensions: x, y, z The mesh can be destroyed.

The mesh has a size characterized by The mesh moves.

magnitudes in the range 0 to 10, with 5 as normal. ~ The mesh can be visible or invisible.

The mesh is associated with a named mesh file. The mesh can be resized.

The mesh has visibility status. The mesh file for the mesh can be changed.

Table 3.4 shows characteristics of a highly cohesive class. Notice that the class concerns a
narrow set of activities that are focused on the provision of one basic service—in this case,
the appearance and movement of the object instantiated from the class. The class does not
concern itself with such things as landscape or texture.

Diagramming a Class

Table 3.4 provides a set of items that can be recast using the UML symbol for a class.
Figure 3.12 shows the result.

The structure of a class: An example, the CMesh class:

Name CMesh

-m_strMeshName:string
-m_intXCoordinate:int
-m_intYCoordinate:int
-m_intZCoordinate:int
-m_inMeshSize:int
-m_bVisibility:bool

Attributes (state information)

+SetSize():void
+SetPosition():void
Operations (possible behaviors) +SetMesh():bool
+SetVisibility():bool

Figure 3.12
The UML represents a class using a rectangle divided for class name, class
attributes, and class operations.

Figure 3.12 depicts how the UML graphically represents a class. The representation shows
that classes have a name, attributes, and operations. Note the following features:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Class Diagrams

® The name appears in the first or top division of the rectangle, the attributes appear
in the second division, and the operations appear in the bottom division. This is
the most common representation of a class. Note that in some cases, the number
of divisions can be increased so that properties can be listed. Generally, however,
the order is name, attributes, and operations.

m The plus and minus (+, —) signs tell you about the scope of an attribute or opera-
tion. The plus means public. The minus means private. A third such sign, the
pound sign (#), indicates protected.

= The word following the colon tells you the type of the attribute or the return type
of the operation.

The following code declares and implements the UML CMesh class representation featured
in Figure 3.12. If you are new to C++, don’t worry about the specifics:

//Declaration...
finclude "stdafx.h"

//Declaration...
class CMesh
{
private:
string m_strMeshName;
int m_intXCoordinate,
m_intYCoordinate,
m_intZCoordinate;
bool m_bVisibility;
public:
CMesh(int x, int y, int z,
string meshName,
bool visibility);
void SetSize(int size);
void SetPosition(int x, int y , int z);
bool SetMesh(string name);
bool SetVisibility(bool status);
b

//implementation ...
CMesh::CMesh(int x, int y, int z,
string meshName,
bool visibility):
m_intXCoordinate(x),
m_intYCoordinate(y),
m_intZCoordinate(z),
m_strMeshName (meshName),
m_bVisibility(visibility)

/*.00%]

TEAM LING - LIVe, Informative, Non-cost and cenuine !

95

9%

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

void CMesh::SetSize(int size)
{

/%%
}

void CMesh::SetPosition(int x, int y , int z)
{
[*000%]
}
bool CMesh::SetMesh(string name)
{
[*000%]
return true;
}
bool CMesh::SetVisibility(bool status)
{
/%005
return true;

Class Relations and Class Diagrams

A class diagram statically represents a software system or subsystem. Table 3.5 lists a few
features of class diagrams. Chapter 6, “Object-Oriented Fantasies and Realities,” provides

extended discussions of these and other concepts.

Table 3.5 Features of Class Diagrams

Term Description

Service provider When a class performs a task for an object of another class, the class is
called a service provider.

Client When one class receives information from an object of another class, the
receiving object is a client.

Generalization One class can be designed so that it becomes a pattern for other classes.
The class that serves as a pattern for other classes is a generalized class.

Specialization A number of classes can be derived from the same parent class but

modified in ways that make them unique. The child classes are said to be

specializations of the parent class.

Inheritance Generalization and specialization are instances of what is usually
referred to as inheritance. The UML term for inheritance is
generalization.

Attribute State of a class. Information that defines an essential aspect of the

object the class creates.

Operation Behavior of a class. An activity that changes or communicates
information about the state of the class. Operations are often referred to

as member functions or methods.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Term

Class Diagrams

Description

Class interface
Instance

Concrete class
Abstract class

Abstract operation

Virtual operation

Pure virtual class
Association
Aggregation

Composition

The interface is the set of operations (methods) that allows an object to
communicate with other objects.

Another name for an object. An object is an instance of a class. A class
can create many objects, and a class can have many instances.

A class that can be used to create an object. It has no abstract
operations.

A class that contains at least one abstract operation. An instance of the
class cannot be created.

An operation that must be overridden or implemented in a specialized
class. In C++, an abstract operation (member function) is identified with
the keyword virtual.

An operation (or member function) that is defined in a base class and
that you can override (or redefine) in a derived class. Unlike an abstract
operation, the defined operation does not have to be defined in the
derived class.

Also called an interface class. This class consists wholly of abstract
functions and is used purely as a pattern for deriving classes.

One class has an instance of another class. The instance need not be an
attribute. The relationship can be general.

One class has an instance of another class. The instance is an attribute,
but the attribute might or might not be used.

One class has an instance of another class, the instance is an attribute,
and the attribute is always used.

Class diagrams depict relationships between classes. Two primary relationships describe
most of the activity that a class diagram depicts: generalization and association. Note the
following:

® An “is a” relationship characterizes generalization. In other words, one class is a
version of another.

m A “has a” relationship characterizes association. One class has an instance of
another class.

These two relationships are illustrated in Figure 3.13. The Weapon class “has a” Grip. The
Weapon class “has a” Blade. On the other hand, Axe “is a” Weapon, as is Sword.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

97

98 Chapter 3 = A Tutorial: UML and Object-Oriented Programming

: [Weapon
Grip -m_Handle:Grip > Blade
1| -m_Blade:Blade 1

+SetActive():void{virtual}

+SetHandle():void
+SetBlade():void

/\
I I

Axe Sword
SetActive():void SetActive():void
Figure 3.13

Generalization and association in a class diagram.

Note the following features of Figure 3.13:

The diamonds illustrate composition, which is a special version of association. The
diamond shows that the class it touches “has an” instance of the class that its line
points to.

The diamonds touch against the class, Weapon, which has instances of Handle and
Blade.

The closed arrow indicates inheritance. It points to the generalized class. The spe-
cialized classes (Axe and Sword) inherit features from the generalized class (Weapon).

The Sword class has two concrete operations. The two derived classes (Axe and Sword)
automatically inherit these operations. In other words, they become part of Axe and
Sword. The operations are reused in this way.

The generalized class has one abstract operation, which the word “virtual” identi-
fies. When a class has an abstract operation, the classes that are derived from it
must make their own versions of the abstract operation. This is why the operation
appears in all three classes. This is also how polymorphism is implemented.

Because it contains an abstract operation, Weapon cannot be instantiated. For the
functionality embodied in this class to be used, other classes must be derived from
the class. The derived classes, given that they override any abstract operations they
inherit, are concrete classes. In other words, you can create instances of them.

The sections that follow discuss these terms in detail.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Class Diagrams 99

Generalization

Generalization is usually defined as a relationship in which one class (a derived or child
class) is able to reuse the attributes and operations of another class (a base or parent class).
The more common term for generalization is inheritance. Generalization also encom-
passes a relationship in which one class can implement another. The UML provides a ready
means of illustrating such activities.

Class diagrams show three primary types of generalization that result from the three types
of class involved in generalization. Table 3.6 provides a review of terms and their definitions.

Table 3.6 Class Types and Generalization

Type of Class Description

Concrete This class contains no operations that a derived class cannot inherit and
use without further ado. You can declare an instance of a concrete class.

Abstract This class contains at least one abstract function. (In C++, this is referred

to as a pure virtual function.) An abstract operation is one that another
class must implement or define. You cannot declare an instance of an
abstract class.

Interface This class contains only abstract operations. It serves as a pattern, forcing
its user to implement all the operations that it lists. You cannot declare an
instance of an interface.

Concrete Classes

Figure 3.14 illustrates a concrete class, Weapon, in a generalization relationship with two
concrete derived classes: Axe and Sword.

Weapon

m_Handle
m_Blade

SetActive()

T

Axe Sword

Rest() Sheathe()

Figure 3.14
Concrete classes are inherited without qualifications.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

100 Chapter 3 = A Tutorial: UML and Object-Oriented Programming

The Weapon class has two attributes: m_Handle and m_Blade. It has one operation—
SetActive()—which two derived classes—Axe and Sword—can access. A public operation
within a concrete class, SetActive() automatically becomes accessible in any class that is
derived from Weapon.

Axe and Sword extend Weapon because each offers an operation in addition to the one inher-
ited from Weapon. When a class is concrete, you can declare an instance of it. In this class
diagram, then, you can declare an instance of Weapon. You can also declare instances of Axe
and Sword.

Concrete and Abstract Operations

When one class establishes features that are common to several other classes, the class is a gen-
eralization of other classes. Class designers who create generalized classes have a choice to make.
The choice involves whether they want to force those who use the class to specialize specific oper-
ations listed in the generalized class. Figure 3.15 illustrates the decisions the class designer makes
when evaluating operations that are defined in a generalized class.

SetActi <:] (Abstract: Force specialized
etActive() classes to have unique versions
of this operation.
_
SetHandle <
0 Concrete: Allow
specialized classes to
use these operations
SetBlade() <:] as is or overide them.
Figure 3.15

Designers make choices about abstract and concrete operations.

Abstract Classes

An abstract class has at least one abstract operation. When a class has an abstract opera-
tion, you cannot declare an instance of it. In Figure 3.14, the three concrete classes allow
you to declare instances of all three classes. In Figure 3.16, the situation differs, as
explained next.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Class Diagrams

Weapon
{abstract}
SetActive:void{virtual}
GetStatus:void
Axe Sword
Rest() Sheathe()
SetActive() SetActive()

Figure 3.16
Abstract operation creates abstract classes.

In Figure 3.16, the Weapon class has a single abstract operation—SetActive()—so it is an
abstract class. You cannot create an instance of this class. To make use of its operations,
you must first specialize the abstract class. To accomplish this, in each of the derived class-
es (Axe and Sword), you must implement SetActive(). Create a nonvirtual (or nonabstract)
operation of the same name, parameters, and return type.

In addition to the SetActive() operation, notice in Figure 3.16 that the abstract class
includes another operation: GetStatus(). This operation is concrete. You do not need to
override it in the derived class. Given that each class has an implemented version of
SetActive(), Axe or Sword objects can make immediate use of GetStatus().

Interfaces and Polymorphic Activities

You can also use an abstract base class in at least two other ways. One way is to set up a
type that imposes a pattern across a set of subclasses. In Figure 3.16, all those classes that
are added to the game to define weapons must have a SetActive() operation. If many dif-
ferent weapons are stored in a container of the type Weapon, it remains necessary to call
only one operation to set all the weapons to an active mode.

In addition to forcing a pattern on a set of classes, you can use an abstract class as a para-
meter type that will accommodate all the derived types of data. Note how the following
C++ operation uses Weapon as a parameter type.

class CCombat

{

/1.
public:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

101

102

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

ArmCharacter(Weapon& wpn)
{
wpn. SetActive();

}
b
The ArmCharacter() operation calls SetActive() for any subclass of Weapon, and for this
reason, objects of the types Axe and Sword can be passed to it. This is an example of poly-
morphism.

Interfaces

An interface is a class that has only Weapon

abstract operations. Figure 3.17 finterface}
provides one way to represent an
interface class. In C++, such a SetActive:void{virtual}

. . GetStatus:void{virtual
class has pure virtual functions i{ i

and is said to be a purely virtual
class. An interface forces all the
derived classes to implement the | |
functions that are named in the Axe Sword
interface. An 1nterfac§ prov.ldes S e Sheathe()
ready means to make it possible to SetActive() SetActive()
achieve polymorphism in opera- || GetStatus() GetStatus()
tion parameters. You can also use

an interface to specialize opera- Figure 3.17
tions from a parent class. A pure virtual (interface) class requires operations to be
implemented.

Associations

Classes and their objects relate to each other in several ways. Whereas generalization is
reserved for classes, another relationship, association, is used to characterize relationships
between both classes and objects.

Further, you can represent objects both statically and dynamically. You represent objects
statically in what is known as a generic object diagram. On the other hand, you can also
represent object relationships dynamically, in what are known as interaction diagrams.

To make good use of both class and object diagrams, you need to understand associations.
When applied to objects, associations are called links.

You use associations to show relationships between objects. Association differs from gen-
eralization in a few significant ways:

= Generalization implies that the derived class is a version of the base class. One class
“is” another class.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Class Diagrams

® Objects (or classes) that are related through association are not generalized or spe-
cialized versions of each other.

® Associations apply to both objects and classes. Inheritance is a static structural
relationship, so it only involves classes.

® Whether an object or a class, when two things are associated with one another, a
dependency exists between the two.

Both class and object diagrams use lines from one class to another to show that one class
depends on another. You can adorn the line in different ways to convey information about
the dependency. Figure 3.18 shows a rudimentary association.

Character wears —» Hat
1 social status 1..6

Figure 3.18
An association has a direction and a role.

Note the following features of the association shown in Figure 3.18.

B “Wears” is the name of the association. It allows you to understand what a
Character object does with a Hat object.

® The small arrow to the right of “wears” indicates the direction of the action, so you
can read, “A character wears a hat.”

m “Social status” is the role that the Hat object plays. When you create role names,
anticipate the name you intend to use as an attribute name. The Hat object is likely
to become an attribute in the Character class, and m_SocialStatus could be the
attribute name.

= Only class names identify the objects. Note that the division of the rectangle into
name, attribute, and operation regions is eliminated to make things easier to draw.
This condensation of features characterizes many class diagrams.

® The numbers at the ends of the relationship (the line) indicate the multiplicity or
cardinality of the objects. One character can have from one to six hats.

Visibility and Multiplicity

Visibility refers to what objects can see. An open arrow at the end of the relationship estab-
lishes which object is visible. Figure 3.19 shows a pair of classes. You can read the arrow as
“can see.” In this case, the Sky object can see the Cloud object. Although how this is so
depends on how we develop the classes, one approach is for the Sky class to contain an
object of the Cloud class. When you create a Sky object, then, you might also create some

TEAM LING - LIVe, Informative, Non-cost and cenuine !

103

104

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Cloud objects in it, and with the creation of the Cloud object, the Sky object depends on the
Cloud object. On the other hand, the Cloud object does not know that the Sky object exists
and has no dependency on it.

v
O
o
c
S

Sky 1 1.7

Figure 3.19
Association shows visibility and multiplicity.

Multiplicity is another term for cardinality, which designates the ratio of objects of one
class to those of another. Figure 3.19 shows a multiplicity in which for one Sky object, one
or more objects of the Cloud class might occur.

Symmetry, Asymmetry, and Coupling

When the arrow points in only one direction, the association is asymmetrical. When the
arrows adorn both ends of the relationship, the association is symmetrical. Generally,
designers favor the use of asymmetrical relationships and discourage the use of symmet-
rical relationships. The reason for this is that if classes are mutually dependent, they are
more tightly coupled. If classes are more tightly coupled, it becomes difficult to reuse
them. Reuse is one of the primary goals of object-oriented design efforts.

note

One authority wrote, “Coupling is the degree to which elements of the design are connected to
each other. For class diagrams, it is essentially a measure of how much a class or object knows
about the world around it.” (See Charles Richter, Designing Flexible Object-Oriented Systems with
UML [Indianapolis: Macmillan, 1999], p. 58).

Qualified Associations

If you develop a class that contains a lookup list of objects of another class, you are likely
to make use of qualified association. Such an association allows you to indicate that you
base the relationship between the objects of the two classes on a key. Figure 3.20 illustrates
a qualified association in which an attribute of the Star class serves as the lookup key in
the Sky class. Each Star object has a unique lookup key.

[N] >
:Sk tarN > :St
Sky starNum 0 Star
Figure 3.20

One class accesses another class object using a key.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Class Diagrams

Recursive Associations and Association Classes

Two more terms relevant to associations offer themselves for consideration. When a class
has a relationship with itself, the relationship is recursive. (Another term for this is reflex-
ive.) To save space, this chapter does not illustrate this type of association.

A class that is created solely to allow two other classes to communicate with each other
and that lasts only as long as the communication is valid is an association class.

Figure 3.21 illustrates an association class. Notice that the name of the class must be the
same as the name of the association. The vertical dotted line descending from the associ-
ation between the Dock object and the Ship

ob.)ect is called a depend‘ency hne.. The op‘e‘r.— Ship is moored to Dock
ations that are associated with the “is 1 : 1
moored to” class might provide the num- :

ber of the dock or the time the ship has is moored to

\ 4

been moored. By convention, the name of

the association and the name of the associ-

. Figure 3.21
ation class are the same.

An association class shows a complex relation-
ship between two classes.

Aggregation and Composition

Association has two closely related variants: aggregation and composition. These two types
of association provide a way to identify different whole-part relationships that exist
between one class and the instances of other classes that it includes as attributes.

Both aggregation and composition imply that one object has an object of another class as
an attribute. Note the following points:

® When the composing object must always be a part of the composed object, from
its beginning to its end, the relationship is a composition association. A filled dia-
mond indicates composition.

= When the composing object might or might not be a part of the composed object
but is still given as a reference in the attribute list, the relationship is an aggregation
association. A hollow diamond indicates aggregation. Figure 3.22 shows an exam-
ple of composition and aggregation.

Sarcophagus Tomb Door
«——] m_DoorType:int r——>
0.3 1| m_intSType:int 11.2
Figure 3.22

Aggregation and composition.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

105

106

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

In Figure 3.22, Sarcophagus is in an aggregated relationship with Tomb because at times a Tomb
object might lack a Sarcophagus. A tomb might be empty. Thus, a Tomb object can be instan-
tiated without a Sarcophagus object.

On the other hand, every Tomb must have a Door, and in Figure 3.22, this relationship is
mandated with the use of a composition association.

Different Types of Association

To grasp the general dimensions of association, aggregation, and composition, examine
Figure 3.23. First, note the way Lightning is in many-to-one relationships with the Axe and
Sword classes.

Weapon |

m_Blade

) m_Sheathe
m SetActive:void
GetStatus:void

SetBlade()
SetSheathe()
SetHandle()

A

Axe Sword
Rest() Sheathe()
SetActive() SetActive()

p.o] 4.

* *

| Lightning |

Figure 3.23
The Lightning class is associated with Axe and Sword.

Figure 3.23 shows an aggregation of the Sheath and Weapon classes. Not all weapons have
sheathes. The relationship between the Weapon and the Grip and Blade classes is one of com-
position. Every Weapon must have a Blade and a Grip, start to finish.

Lightning is associated with Axe and Sword. To see how this is so, assume the following use
case description.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Object Diagrams

Weapon Strike. The player battles with Demons. If the Demon is of max
power, the weapon creates a flash of lightning every fifth contact with the
Demon. The lightning shoots from the weapon.

The question to ask is this: Does the player always manage to strike a Demon five times? The
answer here is no. It might be the case that the player never strikes a Demon five times.
Lightning is not an attribute of Weapon. Rather, it is an object that is created by a given oper-
ation of Weapon. For this reason, the relationship between the classes that specialize Weapon
and Lightning is a simple association.

Object Diagrams

If you want to model the way objects in a system interact through messages, you use a
dynamic diagram. You can use dynamic diagrams to examine relationships among
objects. Dynamic diagrams are sometimes referred to as object diagrams. An object repre-
sents an instance of a class. Object diagrams offer little that you do not use in class dia-
grams. The following list details a few of the more important differences between class
diagrams and object diagrams:

= Rather than show classes, object diagrams represent the objects that classes
generate.

m Whereas a class diagram is static, an object diagram is often dynamic. In other
words, an object diagram shows how a particular object sends a message to
another specific object.

® Object diagrams feature the relationships that are familiar from class diagrams, but
in object diagrams, the relationships between objects are referred to as links rather
than associations. Still, designers commonly refer to the relationships shown in
object diagrams as associations. The terms are interchangeable.

m A few adornments not glimpsed in class diagrams appear in object diagrams.
These adornments usually involve how objects are named and how objects send
and receive messages.

Figure 3.24 shows a class diagram (top) and two object diagrams (bottom).

TEAM LING - LIVe, Informative, Non-cost and cenuine !

107

108

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Class Symbols

W
Axe capon Sword

m_Handle
m_Blade

\ 4

A

SetActive()

Objects Identified with Their Types

fancy: Grip weaponSet: Weapon Sabre: Blade

Generic Class Objects

: Grip : Weapon : Blade
Figure 3.24

Diagrams can represent classes or objects.

Notice the following features of Figure 3.24:

= The first row shows three associated class elements. The names of the classes at the

top of Figure 3.24 are not underlined.

= In contrast, in the second row, the names of the objects are underlined. Likewise,

the object names consist of compounded parts. The object name comes first

(fancy), followed by a colon, and the name of the class comes last (6rip). The con-

vention reveals that the object is a named instance of the class (fancy:Grip).

m The third row illustrates another approach to naming objects: A colon is prefixed

to the class name, and the name is underlined. This shows that the object is a
generic instance of the class.

® Designers commonly illustrate object relationships both ways. No hard rule dic-

tates when and where a given approach is used.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Object Diagrams

About Objects

An object represents an instance of a class, and an instance of a class at some point comes into
existence and at another point goes out of existence. This is called the lifetime of the object. When
you diagram how an object changes during its lifetime, your diagram is dynamic. Object diagrams
are often dynamic.

Objects also actively send messages to each other through their operations. (C ++ programmers
call operations member functions.)

Objects are featured in three important UML diagrams. You've already glimpsed the first in the
investigation of class diagrams. This is the generic static object diagram. Object diagrams are con-
venient media for showing the dependencies and multiplicities of objects.

The two other types of diagrams are known as interaction diagrams. The first of these is called a
sequence diagram. Sequence diagrams show the lifetimes of objects and the sequences in which
they communicate with each other. The other type of diagram is called a collaboration diagram.
Collaboration diagrams show how objects communicate with each other.

Links, Dynamic Modeling, and Messages

The relationships between objects are called links. For all practical purposes, links and
associations are synonymous. Links reveal how messages pass from one object to anoth-
er. When a model shows how different messages pass between different objects at varying
times, the model is called dynamic.

Objects communicate with each other via messages. A message is sent whenever an oper-
ation executes. Note how messages are related to the following details of an object:
® An instance of a class has to exist. An instance of a class is an object.

m The class defines the operations that are available to the object, and these opera-
tions are known as the class interface. All objects of a given class have access to the
interface of the class.

= Operations allow objects to send messages.
= The object that initiates the message is the sender of the message.
m The object to which the message is sent is the receiver of the message.

= To show a message, you use a line tipped by an arrow—which can be referred to as
an association or link. The arrow points from the sender to the receiver.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

109

110

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Message Types

When a system processes messages, it passes along control of the program from one object
to another. An object that has control of the flow is active. When an object is active and
sends a message, different things can happen. You can classify messages according to what
happens. Table 3.7 shows you the messages and how they are classified. In this case, a given
object sends a message to another.

Table 3.7 Messages and Their Types

Message

Description

Simple messages

Synchronous messages

Asynchronous messages

Return message

Message Arrows

The object can send a message to another object; by sending the
message, the object relinquishes control of the flow. No further
messages are sent.

The object can send a message and momentarily relinquish control.
When it does this, it puts itself in a kind of suspended state of activity
while the receiver of the message takes control and does something.
When the receiver finishes whatever it is doing, it passes a message
back to the first object. When this happens, the first object regains
control.

The object can send a message to another object and expect no

message in return. In addition to expecting no return message, it also
retains control of the flow and can send still more messages.

This is not so much a message as an acknowledgement. If an object i,
say, waiting for a reply to a message it has sent, the message it
receives to terminate its suspension (or to allow it to continue on with
its activity) is called a return. Most software designers do not consider
this a message, but it can still be traced in an object diagram. In fact,
it might be important to do so.

Now that you know the types of messages, it’s good for you to learn the ways to represent
these messages. Figure 3.25 illustrates the four arrow elements that the UML provides to
indicate messages. Review Table 3.7 if you need help with the terms.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Object Diagrams

Sequence Diagram Messages Collaboration Diagram Messages
1.1 checkpointPostion()

—>

: Level : Mesh : Level : Mesh
— — — simple —

1.1 checkpointPostion()

—_—
: Level : Mesh
synchronous

synchronous
checkPosition()

\ 4

asynchronous
checkPosition()

1.1 checkpointPostion()
—_

simple : Level : Mesh
checkPosition() asynchronous
4
return
--------------------- H - Level bEEEEELEEEEEERETY : Mesh
' return
Figure 3.25

Messages fall into four general categories.

Message Parameters

Message parameters form an essential part of interaction diagrams, especially collabora-
tion diagrams. A full discussion of the syntax of messages is beyond the scope of this chap-
ter, but this section will examine a few basics. Figure 3.26 illustrates the basic syntax of a
message.

returnValu := messageName(parameterName : parameterType) : typeofReturn

O OO0 O

Figure 3.26
The message syntax allows you to show parameters and return values.

In most instances, you need only show the message named followed by open and close
parentheses. The following list discusses the syntax shown in Figure 3.26.

m The value returned by the operation that conveys the message.

® The name of the message. In most cases, you will use only the message name fol-
lowed by open and close parentheses (for example, startAction()).

TEAM LING - LIVe, Informative, Non-cost and cenuine !

111

112

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

® The value or values that the message conveys.
= The data type of the message parameter.

= The data type of the return value of the message.

Sequence Diagrams

A dynamic object diagram, the sequence diagram allows you to trace the flow of the mes-
sages from object to object. To make the flow easy to comprehend, the sequence diagram
depicts behavior of an object along two axes: vertical and horizontal. The vertical axis
shows the lifeline of each object. The horizontal axis allows you to see how messages pass
between objects.

Objects and Lifelines

To create a sequence diagram, you can align the objects of the system or subsystem you
want to investigate across the top of the diagram. Then you can draw lifelines downward
for each object. You can establish nodes on each lifeline that allow you to indicate when
one object communicates with another object. Figure 3.27 illustrates a sequence diagram.

:Timer :Combat :Character :Foe

1. StartAction()

» —
>

2. BeginDuel()

\ 4

3. DecreaseHealth(

4
...............D.‘r{...................

Figure 3.27
Vertical and horizontal axes trace lifelines and message paths.

Four objects stretch across the top of the sequence diagram of Figure 3.27. Note the fol-
lowing features of the diagram:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Collaboration Diagrams

m The objects appear across the top. Notice here that class names preceded by colons
indicate that the objects are generic. Objects do not have to be across the top. They
can be located anywhere it is convenient or appropriate to show them being con-
structed or destructed.

m The vertical boxes are called activations. They indicate when an operation is active.
They’re included here for purposes of illustration, but because all the messages are
depicted as synchronous, it might be imagined that they are waiting for return val-
ues and remain active.

® The lines going from left to right indicate synchronous messages. Such messages
pass control and usually expect some type of return message.

m A dashed arrow depicts return values.

m In all the instances shown here, the messages are in sequence: The timer issues a
start time, the Al device tells the character to strike, and the character strikes the
foe. When the foe is struck, he returns a value, as does the character and the Al
device. When the timer receives the return, it quits.

= You can identify messages in different ways. The notation can be elaborate. To keep
it simple, you can use the message or the name of the operations that issue the
messages.

How to Read Messages
To make sense of the way the messages work in Figure 3.27, consider the following points:
m The class Combat has an operation called StartAction(). The message sent from the
Timer object to the Combat object is sent through StartAction().

® The class Character has an action called StrikeEnemy(). The message that Combat
sends to the Character object is sent through the StrikeEnemy() operation.

m The class Foe has an operation called DecreaseHealth(). The message that Character
sends to Foe is sent through DecreaseHealth().

m In each case, you can replace the operation names with message names, such as
start, strike, and diminish.

Collaboration Diagrams

Both sequence diagrams and collaboration diagrams are interaction diagrams. Further, a
sequence diagram can be converted into a collaboration diagram and vice versa. If a
sequence diagram helps you understand the order in which objects interact with each
other, collaboration diagrams allow you to investigate the specific messages and how they
contribute to the logic of the system. Figure 3.28 shows a collaboration diagram.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

114

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Play() Game 1:create()

\ 4
\ 4

:Character

A

2:SetID()

2:create() {

:Profile 3.2:Update()

»
'

3.1:Select(name)

Figure 3.28
Collaboration diagrams aid with understanding how objects form into components through the mes-
sages they send to each other.

Figure 3.28 shows a few salient features of collaboration diagrams, as follows:

= Military numbering (1.1, 1.1.1, and so on) shows the path that messages follow as
the system completes a given task.

m Objects bear specific or generic names, and the names are underlined.
m Side arrows reveal the direction of the actions of links.

= Labels identify links. Usually, you can add several pieces of information to
the label.

State Chart Diagrams

A state chart diagram is also called a state transition diagram. Such a diagram allows you
to investigate how the state of an object changes. Whereas an activity diagram is a conve-
nient tool for examining use cases, a state transition diagram allows you to go into an
object at one moment in its life and see how its state changes as you move to another
moment in its life.

The most basic use of a state transition diagram is to illustrate an event. An event is a
bounded happening. You begin at one state, make a transition, and end at another state.
This is called an event. The specific items under investigation are the attributes of the
object. You examine the values stored in the attributes at one point, you consider the mes-
sages or changes the object goes through (the operations that make these changes), and
you finish by viewing the changed state of the attributes. Again, this is an event.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

State Chart Diagrams

Why does an object change? It changes because it receives messages that tell it to change.
It receives messages when it interacts with other objects. Messages are sent to an object by
invoking its operations. The object changes when its state (its attributes) changes in
response to information it receives from other objects. When the object changes, the
change is an event.

Events, States, and
Transitions

Three terms describe what happens in
a state chart diagram:

Select
= An object starts in a given state.
m The object receives a message. Select setCharacterType(characterType)
The message need not always [characterType = |gor]
come from another object v

(although it will most of the
time). A message might come
from the hardware system. The
object might send a message to
itself.

Selected

= In response to the message, the

attributes of an object change.

The object goes through a tran- Figure 3.29
sition. This transition is said to State charts show objects in different states.

be an event.
Figure 3.29 shows a state chart diagram.
Note the following features of Figure 3.29:

m The rounded rectangles represent states.

® The arrows mark transitions.

m The filled dot is called the initial state.

m The circle with the dot inside is called the end state.

= In Figure 3.29, at the Start state, the character attribute has a default type of “char-
acter.”

m The Selected state shows the changed state of the object.
setCharacterType(characterType) [characterType = Igor]

TEAM LING - LIVe, Informative, Non-cost and cenuine !

115

116

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

= This message specification tells you the action that must take place for the object
to change.

m The arrow indicates the direction of the transition.

More on State Transitions

In addition to showing single transitions, state transitions can show composites. A com-
posite consists of a set of states and transitions that can be viewed as a single event. Figure
3.30 shows a composite state diagram. The large rounded rectangle surrounds two states,
showing a composite event.
The composite event has a
name—given in the top of
the composite rectangle.

In Figure 3.30, note that the Exiting

composite diagram shows

two states and one transition @

inside the composite box—

which is titled “Exiting.” The ! when(selected)
composite state deals with a

set of states that involve the @@
same changes. Although
these changes are not shown
here, the “selected” action v
might apply, say, to a setting () C
that says that the state of the Done

game is to be saved. If select-

ed, then the state issaved toa Figure 3.30
file for future startup activity. ~ Composite states show substates.

Component Diagrams

As you develop your game, you usually develop components that take care of sound, ani-
mation, data storage, and other tasks. You might develop these as separate executables. In
all such instances, it is a good idea to organize these components so that they are grouped
according to the services they provide. A component diagram provides you with the abil-
ity to show the groupings of these libraries and resources.

note

A component is sometimes called a subsystem. A component is also sometimes called a module. A
component is occasionally a unit of execution—a set of files compiled into a single dynamic link
library. In other cases, a component is a collection of “resource” files.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

The organization of the components of a system has both logical and physical implica-
tions, but the governing factor in component diagrams is how they are grouped in the sys-

Component Diagrams

tem architecture. Figure 3.31 illustrates a component diagram.

Engine

<<executable>>
engine.dll |,
{version = 1.1.1}| %,

Audio

Database P

» BEEEEEEEEEEEE

audio.exe

gameState.db

Figure 3.31
Component diagrams depict larger component groups.

Note the following features of the component diagram depicted in Figure 3.31:

The tabbed rectangles represent components. A component can be a separate exe-
cutable, replaceable entity. It can also represent collections of files. In this case, the
engine for the game, the music player, and the database engine have been set up so
that they can be separately installed or updated.

A stereotype is used with the Engine component. You can use stereotypes and
other notation to describe the component.

Tagged values or properties can provide supplemental information. Here, a prop-
erty for version allows the version number of the engine to be identified.

The stemmed line extending from the Audio component represents an interface,
which is a common feature with components.

The broken lines with the open arrows indicate dependencies. In other words, the
engine uses Audio and Database components.

A name for each component should appear somewhere near the component. The
name is a logical name rather than the name of a file or executable that the com-
ponent contains.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

117

118

Chapter 3 = A Tutorial: UML and Object-Oriented Programming

Package Diagrams

Package diagrams closely resem-

ble component diagrams. They —\ —\

offer a way to group together ele-
ments (such as classes) when you
create design documentation.
The relationships that apply to

Installer S REEEEELEES Game

object and class diagrams also

apply to package diagrams. A —\ f

folder indicates a package.
Dashed lines show dependen-
cies. Packages usually contain Tools
groups of classes that provide a
common service. Figure 3.32
illustrates a package diagram. .

Figure 3.32

Use package diagrams to group elements during the design
Deployment phase.
Diagrams
A deployment diagram
provides information |[client:GameBase Server
on the physical loca-
tion of different com- %«ﬁggﬁglﬁ»
ponents or packages. It || ———_ | | ... N SameServer
differs from a compo- @
nent diagram because Game
it identifies the physical
(hardware) locations.
Figure 3.33 shows a
deployment diagram. |

Database Server “
Profile DB

Figure 3.33
Deployment diagrams identify physical system locations.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Conclusion

Note the following features of Figure 3.33:

® The boxes are nodes. A node can be a server or any other physical device on which
the system software is installed.

m The tabbed folders are packages.

m Packages appear within the nodes, but other elements might appear, also. Exam-
ples might be serialized classes that are written to a given server. In this case, you
might see a class or object diagram in a node.

m The line with the circle represents an interface. The database package is accessed
through its interface.

® Each node is named. The names are arbitrarily assigned but should indicate the
type or identity of the hardware designated as a node.

m The dashed lines with open arrows represent dependencies. The client package
requires a connection to the server node, and the server node requires a connec-
tion to the database node.

Conclusion

UML offers an extensive set of conventions, and acquiring full knowledge of these con-
ventions requires extensive study. However, you can put the knowledge you have gained
in this chapter right to work if you use UML notation the next time you plan a program.
Use the notation! If you work informally, expanding on an idea or explaining something
to someone else, you really cannot go wrong. As long as the notation helps you in your
work, it is doing its job. Refine your knowledge as you go.

If you want to investigate the subject more extensively, check out the following books:
Ambler, Scott W. The Elements of UML Style. New York: Cambridge University Press, 2003.

Bennett, Simon, John Kelton, and Ken Lunn. Schaum’s Outline of UML. New York:
McGraw-Hill, 2001.

Booch, Grady, Ivar Jacobson, and James Rumbaugh. The Unified Modeling Language User
Guide. Reading, Massachusetts: Addison-Wesley, 1998.

Booch, Jacobson, and Rumbaugh take you to the source. They unified the things that
became the UML. Reading their book allows you to gain a sense of the spirit of the
language.

Computer-Aided Software Engineering (CASE) tools incorporate the syntax of the UML.
These tools are available widely as both commercial products and freeware. Appendix A,
“Installation and Setup,” introduces you to SmartDraw. SmartDraw is not a full-fledged CASE
tool, but it allows you to manually create UML diagrams. It is also an excellent tool for working
with all aspects of game development. (A demonstration copy of SmartDraw is on the CD.)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

119

CHAPTER 4

SOFTWARE DEsSIGN—MUuUcCH
ADO ABOUT SOMETHING

gathered during the requirements phase of the development lifecycle. This

information allows you to define a multitude of software entities that express
the functionality that the requirements specify. In addition to creating a group of func-
tional entities, however, you also organize the entities so that they can work together. The
software design effort involves understanding what counts as a good software system and
then using a select set of tools to discover and depict such a system. In this chapter, you
will do things in two parts toward these ends. First, you'll learn the guiding concepts of
design. Later, you'll delve into the nitty-gritty of the design effort with Ankh. Many factors
come into play. Among the topics covered in this chapter are the following:

= Why do design at all?

m The elements of design, including reducing complexity and focusing on
responsibilities

When you design software, you begin with a collection of information you have

m The principles of design, which involve—among other things—abstraction, cohe-
sion, and coupling

® Design patterns, which are also carried into another chapter
® The developing of design using stripes

m The use of design tools, such as interaction diagrams, class diagrams, Class-
Responsibility-Collaboration (CRC) cards, and component diagrams

m One approach to creating a design and the contents of a software design
description

TEAM LING - LIVe, Informative, Non-cost and cenuine !

121

122

Chapter 4 = Software Design—Much Ado About Something

Beginning Design

After you finish the work of engineering a set of software requirements, you can begin
work on the software design. Design work differs from requirements engineering.
Software requirements engineering involves discovering what functionality you need to
create to support the features of your game. Software design involves planning how to
build the software system according to the requirements.

As discussed in Chapter 2, “Requirements—Getting the Picture,” you capture require-
ments in a Software Requirements Specification (SRS). This document states requirements
as a list and then elaborates on them with use cases. This chapter introduces another doc-
ument: the Software Design Description (SDD). The SDD shows developers how to build
the software system. It does so by taking the information provided in the requirements
and transforming it into diagrams and other design artifacts that show developers how to
build the software that addresses the needs that the requirements express.

Why Design?

Software engineers design software systems for a variety of reasons. One of the most
important reasons is that the complexity of a system tends to increase drastically as you
add elements to it. One way to approach the need to reduce the complexity of software
systems is to consider Figure 4.1.

A

SN
/2

Figure 4.1
Complexity characterizes any random system.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Beginning Design

Figure 4.1 (A) shows a set of differently shaded squares arranged in a random manner. If
you think of the squares as software components, such as classes, you can arrive fairly eas-
ily at a sense of what a design effort might accomplish. Notice in set A how difficult it is
to see how many different shades of squares there are. Suppose that someone told you to
uniformly change the shades of the squares. Set A would make this task fairly difficult
because you would have to work individually with all the squares. The squares have no
order. Because no order in the arrangement of the squares exists, the squares are said to
be part of a complex system.

What can you do with this set of squares? One thing you can do is reduce the complexity
by organizing the squares according to their relationships. What relationships? You might
name shades of gray first.

Note the following results of analysis:

= FEighty-one squares form the pattern of squares.
= If you group the squares according to their colors, you find nine color groupings.
m The squares occur in sets of nine, so you can create nine sets of nine.

= You can further reduce the complexity by making the groupings symmetrical
(putting them in 3 X 3 matrices).

Figure 4.1 (B) shows the colors regrouped into columns. The analogous situation in soft-
ware is when, for example, functions of a given type are organized into specific, well-
focused classes or classes are, in turn, organized into components that provide specific
types of service. Notice how the reorganization reduces the complexity of the design. It is
now much easier to see how the squares can be grouped into nine components. Figure 4.1
(C) shows the squares reorganized so that the groups are more symmetrical. Figure 4.2
elaborates on the effects of the design effort.

Software design involves examining the elements of a system to find ways to group the
elements according to the relationships that pertain between them. Ultimately, this activ-
ity involves seeking certain design objectives. To identify the elements and their relation-
ships, you can use design rules. Design rules begin with objects and messages. When you
reorganize the elements and refine their relationships, you apply design principles. Design
principles help you identify collaborations of objects. You can move to a higher level of
organization when you consider the different possibilities for how to arrange the collabo-
rative elements so that they achieve the best results. For example, notice that the squares
went from being in columns to being in matrices. At this level, you apply design patterns.
At a still higher level, you consider what is known as the architectural style of the system.
Figure 4.3 illustrates a hierarchy of these concepts of design.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

123

124

Chapter 4 = Software Design—Much Ado About Something

Greatest level of complexity.
Greatest level of noise.
Least manageable.

Reduced complexity.
Reduced level of noise.
More manageable.

SN
[

Least complexity.
Symmetrical groupings.
Most manageable.

Figure 4.2
Design reorganization reduces the complexity of the system.

Architectural Styles

Design Patterns

Design Principles

Design Rules

Elements and Relationships

Figure 4.3
Design involves moving from the least to the most
encompassing views of the system.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Beginning Design

Architecture and Design

In its labor of reducing the complexity of software systems, software design draws upon a
collection of practical tools that you use to analyze and refine a system into interacting

objects. At the same time, it also draws
upon high-level conceptualizations of
software systems. Architecture provides
you with a set of conceptualizations of
what a system should be when completed.
The architectural vision of the system
marks both the beginning and the end of
the design journey. It marks the beginning
because it provides a set of assumptions

that guide the design activity. It marks the

end because it calls for a general view of
the system as an architectural creation.
Figure 4.4 summarizes the perspective.

Figure 4.4
Design and architecture meet in practice.

In contrast to architecture, design concentrates on details and seeks to organize the ele-
ments within a system to produce a system that fulfills the specifications given in the
requirements. Architecture and design are sometimes regarded as the same thing. This is
not a particularly beneficial way of looking at things. At some moments, you assess a task
from an architectural perspective. At other moments, you immerse yourself in details and
concentrate on specific features of design. As you move forward in this chapter, it’s impor-
tant to remember the distinction between practical component refinement and overall
system style.

Rules for Identifying Design Elements

The approach to design used in the Ankh development effort involved rules. Ways of defin-
ing design elements that formed the groundwork of the design effort were designated as
rules. These were not rules in the sense of laws that spell out right and wrong behavior for
system designers. Rather, these rules consisted of assumptions that helped designers under-
stand the content of what they were dealing with. The rules fall under five general headings:
state machines, functions, relationships, collaborations, and responsibilities. When you seek to
design a system, you can first identify items that fall under such rules. Using the rules as
guides, you can then design the system. Figure 4.5 offers a summary view of ways to identi-
fy elements.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

125

126

Chapter 4 = Software Design—Much Ado About Something

Rules for Identifying
Design Elements

State Machines
Functions
Relationships
Collaborations
Responsibilities

Figure 4.5
Find ways to identify the fundamental elements of
design.

State Machines

The generic state machine is one of the first basic elements of design. Generally, a state
machine is an entity that is capable of storing information and making decisions based on
that information. An object is often identified as a state machine because its attributes
store information and its operations respond to input using the stored information.

The point is to establish that a software system can contain entities that store information
and are capable of reacting in an indirect fashion to the system around them. When enti-
ties behave in this way, they are called state machines or, more simply, objects.

Functions

Another element of design is the function—or operation. In contrast to state machines,
operations might not store information. Instead, they might immediately process the
information and return a result. Such entities are not state machines; they are usually
identified as functions. Functions can be collected together into libraries. The libraries can
provide a set of services. An example is the C math library.

Relationships

Whenever one element (whether it’s an operation, a class, a state machine, or a compo-
nent) communicates with another, a relationship is established between the two elements.
A relationship can be considered asynchronous when one entity communicates with

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Beginning Design

another without needing to receive information in return. A relationship can be charac-
terized as synchronous when it expects a response or an acknowledgement. The outcome
of the relationship between two elements is that messages that the relationships transfer
allow the states of elements to change. An element’s state is characterized by the informa-
tion it contains. The message might cause a state change.

Collaborations

When you collaborate with someone to do something, you join with that person to
accomplish certain goals. Both functions and state machines can collaborate. From an
object-oriented perspective, a collaboration involves division of labor and specialization,
so that a group of objects provides the system with a type of service that transcends the
service provided by any one object within the collaboration.

Responsibilities

Responsibilities in a software system begin with the requirements specification. Ultimately,
with every line of code, you should seek to implement the functionality that the require-
ments specify. What does not trace back to the requirements deserves questioning. System
designers often use role names to illustrate the responsibilities of particular elements. Class
and function names convey their responsibilities. Likewise, component names reveal the
collective responsibilities of the elements that the component groups together.

Principles of Design

Principles differ from rules on a num-
ber of levels. Principles of design guide
you as you refine the relationships you
develop within and between the classes
or components that make up your soft-
ware system. Principles of design help
you know how to reshape the system
through incremental refinements. You
use these principles to help you deter-
mine how to merge, divide, eliminate,
and generally refine the elements of
your system. Rules, in contrast, relate
to the simple identification of visible
elements or component groupings of
the system. Figure 4.6 offers a summa-
ry view of a few common principles of

Principles of Design

Seek Abstraction
Seek Cohesion
Avoid Coupling

Find Collaborations

Identify Responsibilities
Practice Decomposition
Practice Consolidation
Eliminate Redundancy

Share Resources

Reduce Hierarchy Depth

design. Figure 4.6

Establish principles of design.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

127

128

Chapter 4 = Software Design—Much Ado About Something

Seek Abstraction and Encapsulation

Because objects in the real world are complex, people form abstractions to capture their
essence. For example, you might employ abstractions to create characters in a game. You
create these characters using classes. The characters are less complex than real people
because the classes with which they are created allow them to behave in only a limited
number of ways and to have a limited number of states. This activity of limiting the char-
acters to behaving and existing in limited ways is a key to understanding encapsulation.

Encapsulation combines attributes (which are the things that hold the state of a object)
and operations (which are the things that change the behavior of an object) into a single
entity—a class. You use the class to create objects. Each object performs according to the
behaviors and attributes that the class encapsulates. It is in this way that a class encapsu-
lates the attributes and behaviors of the characters in a game.

The user of the class should be concerned only with receiving the services that the class
provides. Services are provided to an interface. An interface consists of the public opera-
tions of a class. The interface simplifies the use of what might be thousands of lines of
code; the only thing the user of the interface sees is the operation through which the ser-
vice is obtained.

You can also apply abstraction and encapsulation to larger design contexts. For example,
in the use of components and frameworks, you can package a software component con-
sisting of many classes so that it, too, offers a simple interface. Frameworks abstract the
work of large groups of classes so that programmers can easily develop specific types of
applications. (C# Forms, MFC, and Java Swing are examples.)

Seek Cohesion

Cohesion describes how well the operations in a class address one specific theme. The
theme is usually spoken of as the responsibility of the class. Every operation within a class
should address some aspect of the responsibility that is assigned to the class. If a class is
concerned, for example, with Artificial Intelligence (AI), then it probably has no business
providing operations that deal with sizing dialog boxes or regulating audio output.
Generally, classes should be highly cohesive.

Avoid Coupling

Coupling is a principle of design because it, like cohesion, can apply to every element in
the system. Coupling refers to the extent to which elements depend on each other, but it
goes a step beyond. Every element in a system, to some degree, depends on other elements
in the system. On the other hand, when elements depend on each other too much, their
dependencies require that when one part of the system must be changed, many other
parts of the system might have to be changed as well. Tight coupling reduces the flexibil-
ity of the system. Two major problems result from tight coupling. One problem has

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Beginning Design

already been mentioned: For every one change, many others must be made. The other
problem is that if any one part of the system fails, many others will fail, also. Such a sys-
tem is said to possess a high degree of instability.

Practice Decomposition

Decomposition is a way to achieve both coupling and cohesion. To decompose an entity
is to break it into pieces. You break a complex set of system functionality into subsystems
to reduce its complexity. Decomposition reveals whether subgroupings exist. You can sim-
plify complexity by breaking noncohesive classes into cohesive classes.

Practice Consolidation

Although approaches to programming differ from individual to individual, programmers
commonly solve problems by first decomposing problems into tasks. Each task can then
become the subject of a separate function. This type of work can characterize the devel-
opment of a class. For example, when you design the interface for a class, it is important
to see whether operations are redundant. Do you require two function calls when one
would do?

Eliminate Redundancy

Each class in a program should address a single responsibility, and no two classes should
focus on the same one. Consider a situation in which you have two classes that provide
similar services. An example might be classes that create sliders. You develop two classes,
one for vertical sliders and the other for horizontal sliders. Clearly, the objects you create
with these classes resemble each other closely, with the difference only that objects of the
classes adjust for vertical or horizontal positions. Is it worthwhile having two classes? You
can eliminate such redundancy by creating one class that allows you to instantiate sliders
horizontally or vertically, depending on the setting, say, of one attribute or the value pro-
vided to one operation within the class.

Share Resources

You can view resources in several ways. Resource sharing in this context is referred to as
relating to a given type of service (or activities that address a given responsibility). The
elements that provide a given type of service can be grouped into one class or component.
Other components can then draw upon this one class or component for the services it
offers. Sharing of resources reduces complexity and supports software reuse. One of the
prime means of sharing resources is to create hierarchies and employ inheritance to spe-
cialize operations. Another approach is through composition, which involves creating an
instance of one class inside another.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

129

130

Chapter 4 = Software Design—Much Ado About Something

Reduce Hierarchy Depth

This principle arose in response to the tendency that inexperienced designers have of cre-
ating deep hierarchies. The drawback of using deep hierarchies is that system perfor-
mance declines when classes become large. Large classes result when a class lower down
in a hierarchy inherits an enormous amount of functionality from classes higher up. Each
class absorbs memory. Experienced designers seek to reduce the depth of hierarchies to a
minimum. Reduced depth provides less coupling and better performance. Rather than
seeking extensive hierarchies, designers should seek to accomplish as much as possible
through aggregation.

Patterns

Patterns extend principles. Patterns have become so important in recent years that they
have permanently altered the basic practices of object-oriented programming. They have
added to the principles of object-oriented design the notion that certain solutions to
design problems can be applied across any number of instances of application develop-
ment. Chapter 7, “P Is for Pattern,” is dedicated to patterns.

For now, it is enough to observe that a pattern provides a way to understand how to design
components. Although one pattern, the Singleton, provides a model for one class, it is
generally the case that patterns apply to groups of elements. In other words, they struc-
ture components, or subsystems. Patterns can also extend beyond components, becoming
models for collections of other components. And patterns can be said, likewise, to apply
to entire frameworks and applications.

Here are a few patterns, which are discussed in more detail later:

= Controller. Controller patterns find a wide application in the Ankh design because
the user repeatedly interacts with the system through a variety of objects. Rather
than embed event-processing capabilities in interface features, you can use con-
trollers. A Controller pattern allows a dialog box or window to pass events to the
system. Such objects should not contain operations that communicate directly
with the system.

= Singleton. A Singleton is a pattern that can be implemented to control the number
of times a class is instantiated. A Singleton can contain a special create() function
that ensures only a single instance of the class is ever created. The basic game
instance can be implemented using a Singleton pattern.

= Expert. The Expert patterns solve a problem that often arises when a body of infor-
mation derived from several sources is needed to respond to a given event. The
Expert pattern allows one class to capture this information in one place so that
other classes can use it. The alternative is to repeatedly embed expert capabilities in

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Beginning Design

a number of classes whose responsibilities involve performing activities that have a
much wider applicability than the focus of information that the Expert pattern
possesses.

= Bridge. A Bridge pattern is a way that a proxy can be set up. This pattern is often
used to eliminate deep hierarchies, which can cause major problems with perfor-
mance. You can implement a Bridge pattern when, say, one class has a number of
specializations based on what might amount to one attribute change. Perhaps you
have a CCharacter class. You might derive two classes based on whether CCharacter is
animated or static. This would create the beginning of a hierarchy that might be-
come bulky. Suppose, for instance, that you added audio capabilities later on. To
overcome the problem, you might create an abstract class called CMode. Two classes
named CAnimateMode and CStaticMode could be derived using CMode. CCharacter would
require only a reference or pointer to CMode. It could then acquire the capabilities
needed through the Bridge.

Styles

Chapter 19, “Philosophy of Software Engineering and Game Development,” uses style to
refer to the management practices that characterize a game development organization.
The parallel with architectural style is intentional. Architectural style defines the compre-
hensive software design vision that either guides or emerges from the design effort. In
some instances, the effort might begin with a dictated style. A larger organization, for
example, might have subcontracted the organization for which you work to produce a
game of a given description. The architectural style might be dictated to you through the
game design and an exacting list of constraints that expressly document how you are to
build the game.

On the other hand, you might be involved in an organization that is evolving its own game
engine. The way you design the engine might be based on the best architectural information
you can find, but you might decide to take specific risks and design components with a com-
pletely new approach. You reveal your architectural style in the design that you create.

You can study architectural styles the same way that you study the architectural styles of
buildings, and within the game industry, such a trend is well underway. This kind of study
is beyond the scope of the current discussion; however, consideration of a few generic
styles would be beneficial.

Extensible Design Style

An extensible framework seeks to make a standard set of products fairly easy to produce.
It also allows the functionality of the products to be gradually extended through repeated
development efforts. Components are added or enhanced within the same basic frame

TEAM LING - LIVe, Informative, Non-cost and cenuine !

131

132

Chapter 4 = Software Design—Much Ado About Something

work. If you were to examine the games produced by a company that maintains an exten-
sible game framework, you might find that the characters interact in the same ways from
game to game. You might find the AI predictable. In addition, you might note similarities
in the way layers are managed. You might find functionality that is clearly built upon the
older functionality. Such continuity (to put it politely) occurs because all the games are
developed with the same underlying software. This is the framework.

Distributed Design Style

A distributed architecture means that the user interface will be designed on a client-server
model. Tiers can be added for processing and database interactions. Components are like-
ly to be packaged as modules (in other words, packaged as separate executables that run on
separate machines). Such an architectural style makes the development of the game from
the start a top-down, sophisticated undertaking.

Componential Design Style

Many books on “game design” blithely tell software developers to go out and buy things
like game engines or Computer-Aided Software Engineering (CASE) tools. The value of
this approach to game development is based on the extraordinarily successful history of
component-based software in other industries. Unlike extensible design styles, compo-
nential design styles allow companies to assemble products from off-the-shelf, well-tested
software. Componential design strategies emerge most often in organizations that have no
strong desire to enter directly into core game development. Their preference might be to
place emphasis on publication, market research, and game design. They then buy the
component software that allows them to quickly give shape to the product.

Free-Form Style

Free-form architecture might be where the greatest potential for creativity lies. Generally,
free-form styles of architecture use bottom-up design approaches and try to find patterns
in what is discovered during the design effort. The creation of Ankh falls into this catego-
ry. This approach seeks empirical information about the design and development process.
The Ankh effort begins with an atomized set of classes and analyzes them for features that
have bearing on design decisions.

Designing for Quality

As a final discussion leading up the actual work of designing a software system, it’s neces-
sary to take a short excursion into the realm of quality issues. Quality might seem to be
an illusive thing, but in software engineering efforts, quality almost always has a strong
impact on the lifetime cost of a software system.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Designing for Quality

The sections that follow provide a short
and traditional list of the elements of
quality. Such organizations as the
International Standards Organization Measures of

(ISO) have established a set of quality Design Quality
standards and the ways that metrics can
be collected for them. In the context of
this chapter, it is acceptable to offer
general statements about a few of the

Maintainability

X Portability

ISO and other standards of quality. Usability
Figure 4.7 summarizes some of the Performance
. Testability
quality issues. Efficiency

Reliability

Maintainability

Maintenance programming character-

izes any successful software product.

You might relish the idea of participat- Figu_re 4.7 o

ing in one of those organic, experiential Sousatlslty design reduces software lifetime development
adventurers in which you and a small '

group of colleagues create the next

best-selling game, but the reality is that around 70 percent of the work in the game indus-
try involves maintenance programming. In other words, you will be fixing bugs and
extending or enhancing a product that already exists. What many people forget about
maintenance programming is that a complete software development cycle characterizes it.
In other words, to extend a product, you must perform requirements engineering, design,
implementation, testing, and release operations.

Software that is maintainable makes success easier than it would be otherwise. When design-
ers design for maintainability, they seek to create software that will be easy to repair and
extend. They design with the idea that what they are designing is a beginning as much as it
is an end. Chapter 17, “Release Planning and Management,” discusses software maintenance.

Portability

Porting software involves moving it from one operating environment to another. A prime
example of portability is a game that developers first develop for a personal computer and
then later port to a game console. What makes porting easy? What reduces the cost and
time needed to port the software? The techniques are fairly standard for those who per-
form such work regularly. Among other things, calls to the operating system should be
collected into specific components. The components can then work to mediate between
the rest of the game and the operating system on which the game runs. The discussion in
Chapter 5, “Old Is Good—The Library Approach,” concerns some aspects of portability.
TEAM LING - LIVe, Informative, Non-cost and cenuine !

133

134

Chapter 4 = Software Design—Much Ado About Something

Usability

Software has several modes of use. Players use a game. But then programmers later in the
lifecycle of the game use the classes or components that the original developers create.
Usability in the software engineering context takes both realms into consideration, but in
this book, the focus centers on how to design the software system so that programmers
can extend or reuse it. Usable software is software that provides interfaces that are straight-
forward to use. Usable software is documented so that it can be readily understood. Many
issues relating to usability might be addressed. One is primary development practices (see
Chapter 13, “What People Do—Development Strategies”).

Performance

Many C++ programmers who are involved in an initial experimentation with game devel-
opment have the experience of watching a game slow down and eventually grind to a halt.
Memory leaks are a performance issue. Likewise, programmers who develop deep class
hierarchies and store a multitude of the heavy objects in a gigantic vector or queue also
know about declining performance. Animation might be sluggish. Information transfer
takes time, and the more information there is, the more time that’s required. Software tun-
ing provides one of the most challenging and technically difficult areas of game develop-
ment (see Chapter 6, “Object-Oriented Fantasies and Realities”).

Testability

Componential isolation of functionality facilitates testability. In other words, effective
testing of a software system occurs because the testing engineers can test areas of the sys-
tem in isolation from each other. Assume that a system consists of 100 components. If test
engineers can test individual components in isolation from others, they have a much bet-
ter chance than otherwise of determining whether the component has performance prob-
lems. Testability also involves specifying software so that test engineers know what to test
for. Testing involves a wide range of criteria, and unless designers initially design the soft-
ware for testability, testing engineers find their work extremely difficult. Chapter 11,
“Evident Evil—The Art of Testing,” addresses some of the central issues of testing.

Efficiency

Efficiency has to do with both the size of the program and the rate at which it performs.
Size is related to things like algorithm performance. A given algorithm can be evaluated in
terms of the time it takes to complete its work. Added to the raw performance of the algo-
rithm, however, is the complexity of the implementation relative to the task performed. A
component that is tangled or mired with complexity might not be the most efficient
implementation of a solution even if its performance is as good or better than another,
less complex solution. Efficiency involves studying several variables. Chapters 9, “Iterating

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Finding Elements and Relationships

Design,” and Chapter 12, “Numbers for Nabobs,” discuss metrics and other criteria used
in evaluating software efficiency.

Reliability

Reliability is a measure of failure rates. In other words, if you run a program a million
times, what percentage of the time will it fail? The resulting data is sometimes labeled as
the meantime to failure. Testers assume from the first that the system will fail.

At the beginning of the test cycle, the software fails often, but as bugs are removed, the fail-
ure rate declines to the point where it is rare. It is only when failure is rare that the soft-
ware is ready to ship. Only then is the failure rate said to be acceptable.

note

Chapter 11 covers testing in detail. For an interesting discussion of reliability and failure in tradi-
tional engineering terms, you might want to examine Henry Petroski's To Engineer Is Human: The
Role of Failure in Successful Design. (New York: Vintage, 1992). An experienced engineer, Petroski
notes an interesting contradiction in engineering history. “While engineers can learn from structural
mistakes what not to do, they do not necessarily learn from successes how to do anything but
repeat the success without change” (99). One outcome of this observation in software design is
that if a system is forced to fail, you can learn a great deal about how to improve reliability.

Finding Elements and Relationships

This section works toward understanding the preliminaries of design. Some authorities
place the activity of describing elements and relationships in a software system as analy-
sis. Whatever it is called, it involves taking into consideration the information that has
resulted from the requirements engineering phase. Your efforts in Chapter 2, which con-
cerned requirements engineering, resulted in three things:

m The requirements list. The list provided a convenient way to track requirements
during the requirements engineering phase. The requirements list helped reduce
the amount of information so you could understand the scope of the system.

m The use cases. The use cases allowed you to understand the context of the require-
ments and to have at hand a ready way to solidify your understanding of the
requirements list. Some experts say that only the use cases are necessary; others
contend that the requirements list is necessary and the use cases are throwaway
work. Actually, both are necessary. You will return to use cases as you begin your
design effort.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

135

136

Chapter 4 = Software Design—Much Ado About Something

= The Task-Object-Remarks (TOR) chart. This was a working table intended to
provide a ready way to store information about objects and their responsibilities
and relationships. Joined with CRC cards, the TOR chart becomes a starting point

for your design work.

The work of design requires that you examine the information these artifacts provide and
determine whether you can see ways to organize it so that you can create a software sys-
tem that solves the problems the requirements present. Figure 4.8 illustrates how you can
use the information from the requirements phase, together with a set of design tools, to
gain an initial view of the primary elements and relationships of a software design.

The use case
provides a
scenario to generate
objects and required
tasks.

The TOR chart
provides
candidate objects
and operations.

Generation of
Primary
System

Elements and

Relationships

The CRC cards
provide a way to
formalize an object’s
actions as a class with
responsibilities.

The sequence
diagram provides
a way to generate a flow
of actions between
objects.

Figure 4.8
Basic design tools allow you to generate objects and their relationships.

Figure 4.8 summarizes activities you perform as you work from requirements to a candi-
date class list. You start with use cases and a requirements list. From there, you proceed to
use CRC cards (described in the next section) to explore collaborations and responsibili-
ties. CRC cards document classes, but at the same time, the content of the CRC card close-
ly corresponds to the object and task listed in the TOR chart. For this reason, the TOR
chart is an intermediary step between the requirements statement and the CRC card. The
end result of the analysis phase should be a list of candidate classes you can begin putting
together through your design effort. Figure 4.9 shows the flow of activity from require-
ments through a candidate class list.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Finding Elements and Relationships

Use R
Cases egs
SaE=

[] [1]
r TOR 1 CRC
i O '
11
Class
List
Figure 4.9

Design tools provide a way to move from requirements to candidate

CRC Cards

CRC cards provide a convenient way to explore how classes (or objects of classes) relate to
each other. Each class has at least one responsibility to provide some type of service to the
system. Each class, likewise, collaborates with other classes when it delivers services. The
classes to which it delivers services are its clients. If a class delivers services, it is a server.

One way that classes relate to each other is through the services they provide to each other.
The collection of services that one class offers to others is through an interface. The inter-
face consists of the public operations that a class contains. A CRC card helps you begin to
establish what operations it should contain. It does this by offering you the chance to ask
why one class communicates with another. Each class is a collection of services. Each col-
lection of services in some way corresponds to the functionality the requirements specify.
Figure 4.10 illustrates the layout of a CRC card.

Class Name

Responsibilities

\ CGameState
AN

1. Keep track of the actions performed |CPlayer
2. Save and load game actions CAction
CFileMgr ™

CWorld [N\

Collaborative Classes

Figure 4.10
CRC cards explore relationships between classes.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

137

138

Chapter 4 = Software Design—Much Ado About Something

The next section discusses using a TOR chart to augment your effort of developing CRC
cards. Following are a few procedural steps:

m Use the TOR chart and its task listing to establish the name of a class.

= Use your use cases and requirements to derive the names of objects. Search for
tasks that must be completed in light of the requirements.

® Determine what you think this class should do. It must have at least one responsi-
bility. It should not have more than three or four. If this class has multiple respon-
sibilities, these responsibilities should be closely related.

= Discover whether your class seems to require information from another class. If it
does, then list this class as a collaborator.

Using the TOR Chart

If you focus on the tasks in the TOR chart, you can derive a candidate list of responsibilities
for the classes you name in the CRC cards. A class might have several responsibilities. You
can also focus on the object name and decide whether it is a suitable beginning for a class
name. To determine the list of collaborative classes, explore the remarks section of the TOR
chart together with the dependencies you observed in your use cases. Figure 4.11 illustrates
the first few listings from the TOR chart. See Appendix D, “Software Engineering and Game
Design Documentation,” (or the CD) for the complete chart.

Starting from the TOR chart created during the requirements phase, you can use the CRC
cards to generate a tentative list of 41 classes. Even though these classes are preliminary,
they serve as a starting point for working through the use cases to identify the final ele-
ments and relationships that define the system. Figure 4.12 shows a candidate list of class-
es. The classes named at this point will be iteratively examined as you move into the next
stage of activity, which involves creating stripes of functionality that bring your prelimi-
nary class lists under intense scrutiny.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Finding Elements and Relationships

<Reg> Task Obiject(s) Remarks
Req_1 Save game GameState 1. Initial game state
2. Save changes
Replay 1. Uses GameState
2. Plays slower
3. Returns to main menu
Action 1. Track character interactions
2. Track interaction with maps
3. Receive action, update
Req_2 Restore game state | GameState 1. GS —Load(Populate GS)
2. Apply instant changes
Req_64 Game clock Clock 1. Start and stop
2. Reset
3. Vary speed
Req_3 Associate profile Player 1. Get the saved directory
with saved game 2. Generate directory
Req_4 Allow choosing Dialogue 1. Bring up a list of files
of file names SaveDialogue 2. Delete game
FileMgmt 3. List games
OpenDialogue 4. Browse directory
5. Confirm overwrite
6. Overwrite game
7. Enter new game
Figure 4.11

A TOR chart provides a list of candidate objects and operations.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

139

140

Chapter 4 = Software Design—Much Ado About Something

1. CAction 11. CFileMgr 22. CLog 32. CSkill
2. CActor 12. CGame 23. CMesh 33. CSlider
3. CAl 13. CGameState 24. CMouse 34. CSound
4. CButton 14. CGraphics 25. CMusic 35. CSoundMgr
5. CCamera 15. CGUI 26. CPanel 36. CSprite
6. CCheckBox 16. CGUIMgr 27. CParticle 37. CState
7. CClock 17. CimageMgr 28. CPicture 38. CStateMachine
8. CDialog 18. Clnventory 29. CPlayer 39. CTextBox
9. CEmitter 19. Cltem 30. CProfile 40. CWindow
10. CEntity 20. CKeyBoard 31. CProp 41. CWorld
21. CLabel
Figure 4.12

The TOR chart provides a list of candidate classes.

Generating Operations

Use case scenarios provide statements that indicate how objects interact through mes-
sages. When you work with a use case, you can isolate terms that help you identify objects.
One approach is to fall back on the preliminary class list to grab the names of classes that
might serve as “collectors” of the actions observed in the use case scenarios. The proce-
dure is fairly rudimentary.

1. Select a requirement you want to begin incorporating into the design.

2. Select the appropriate or corresponding use case(s).

3. Carefully work through the scenario. If you spot a noun that fits one of the classes
you have identified on a preliminary basis, bring this forward to become a general-
ized object in a sequence diagram.

4. Assign actions to objects.
5. Move through the use case until you have assigned all actions in the use case to
operations you place in the sequence diagram and assign, tentatively, to objects.

If you return to a scenario dealt with in Chapter 2, you can examine the events that start
a game. Figure 4.13 illustrates a use case scenario that was introduced in Chapter 2.

Moving to a Sequence Diagram

If you work from the scenario in Figure 4.13, you can generate a tentative sequence dia-
gram. The sequence diagram attempts to translate the actions in the use case into a con-
ceptual view of objects and relationships. Generally, the names of the messages between
the objects don’t need to be precise at this point. The purpose is largely to test whether it
is possible to envision a sequential flow of activity. The sequence diagram allows you to

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Generating Operations

Use Case Name: Player Starts Game

Requirement(s) Explored: 1

Player (Actor) Context (Role): Player

Precondition(s): Game is installed and ready to play.

Trigger(s): Player selects game-start action.

Main Course of Action:

1. The player selects the game-start action.

2. The system requests that the player select a profile.

3. The player selects a profile.

4. The system loads the profile.

5. The system displays a message to the player that tells him that the
play can begin.

6. The player acknowledges the message that the system has displayed and
begins playing.

Alternate Course(s) of Action:

3a. The player does not select a profile.

3b. The system chooses a default profile.

6a. The player chooses to exit the game before playing.

6b. The system asks the player if he wants to save his profile.

6b1. If the player responds yes, the system saves the profile.

6b2. If the player responds no, the system exits without saving the profile.

Exceptional Course(s) of Action:
6a. The system crashes.
6b. The player turns off the computer.

Figure 4.13
Start with a use case to investigate a scenario.

take a set of classes and generate objects from them. Then you explore the sequence of
messages that pass between the objects. Figure 4.14 provides a sequence diagram for the

scenario in the startup use case.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

141

142

Chapter 4 = Software Design—Much Ado About Something

:CGame :CDialog :CGraphics :GameMgr :FileMgr :CProfileMgr

Create()

ChangeGphMode()

»
.

ChangeMepuState(prf)

CheckPiofile(prf)

Find(prf)

GenPlay()

3 SetProfile(prf)

¢

B ity WCECECTTERPEES CREREPEPEPOES

: ShowDialog(prf)

Figure 4.14
A sequence diagram translates the use case scenario into object interactions.

Reframing Operations with a Collaboration Diagram

The collaboration diagram is an interaction diagram, like the sequence diagram. It shows
how objects interact. In many ways, the collaboration diagram is simply an alternative
view of the information you see in the sequence diagram. On the other hand, it differs
tremendously from the sequence diagram because it offers a way to view a set of interac-
tions between objects as a software component. Figure 4.15 illustrates the sequence dia-
gram shown in Figure 4.14 recast as a collaboration diagram.

8. SetProfile(prf)

7. ShowDialog(prf)

1. Create()
: CGame

3. ChangeMenuState(prf) 1 4. CheckProfile(prf) I——I
> GameMgr »| : CProfileMgr
|_‘—‘g'# | e

»(: CGraphics
2. ChangeGphMode() EI 6. GenPlay() v
: FileMgr

5. Find(prf)

Figure 4.15
A collaboration diagram recasts a sequence diagram to emphasize the operations that relate the
objects.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Low-Level Design Tools

In the current context, as pointed out earlier, a component is a set of objects that interact
to provide an identifiable service to the overall system. One of the major differences
between a sequence diagram and a collaboration diagram is that a sequence diagram
shows you the flow of activity modeled on a scenario. The collaboration diagram, in con-
trast, makes it easier to view the collection of relationships between objects as composing
a component. Figure 4.16 contrasts sequence and collaboration diagrams.

Collaboration allows
you to visualize the
interaction as a
subsystem

Sequence shows
you operational
order or flow

o e o e R
== if

. [I—[_]

Figure 4.16
Sequence and collaboration diagrams provide different views of the system design.

Low-Level Design Tools

Low-level design activity immediately precedes or accompanies implementation. One
goal of low-level design is to refine class and operation names and descriptions into
implementation terms. Conceptualizations diminish and class designs become prevalent.
To facilitate the gathering of this information, the specific nature of each operation in a
class needs to be known. This is the work of the operation specification.

Class Diagrams

Before discussing operations specifications, it’s good to review a few notions about class-
es and class diagrams. Toward this end, the first notion introduced is that a class is a stat-
ic entity. In other words, a class is a pattern for objects of a given type. Because a class is a
pattern, it incorporates attributes and operations that might not be fully visible in the
behavior of any one object instantiated using the pattern. To discover the operations in a
class, you might have to explore the class in a number of contexts. To accomplish this, you
can refine the operations in classes using collaboration diagrams in conjunction with
CRC cards and use cases. Note the following:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

143

144 Chapter 4 = Software Design—Much Ado About Something

= Use cases set different contexts of use for a class.

= Different contexts of use require that different operations come to life.

= You can use interaction diagrams to explore contexts of use. The use case can be
translated first into a scenario and then into a sequence or collaboration diagram.

m As different operations come to life, you can refine the class. A combination of
contexts of use reveals that the class has a range of operations that exploration of
no one context of use can expose.

= To ensure that each operation is fully explored, you can write an operation specifi-
cation. You can supplement this with an activity or state transition diagram to
reveal precisely how the operation changes the object that hosts it or calls it. Such a
diagram is often called a low-level design tool because it might be the last thing a
programmer does before beginning to write the code for the class.

Given full exploration of operations, it becomes possible to know both the attributes and
operations of a given class. Figure 4.17 provides a summary view of the activities that

allow you to analyze and design a class.

Develop use
case scenario

I
'

Develop CRC
cards

Develop TOR
chart

Develop sequence

Develop collaboration
diagram :

diagram

I
1
'
'
'
'
1
'
[
'
'
[
[y
[y

Develop use
case scenarios

Develop component
interaction
diagrams

Formalize

Low-level.
Implementation
views result for
the SDD.

class diagram 'Z\%Vg[i'g;'?i;

________ - logical and

High-level. pTTTTmmmmmee implementation
Logical view for H views in the SDD.

the SDD. ; Create component

High-level. -

Provides a diagrams

deployment view
for the SDD.
Figure 4.17

SDD artifacts emerge from the design development effort.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Low-Level Design Tools 145

Operation Specifications

An operation specification has its parallels in CRC cards and use cases. It is a formal medi-
um for structuring the activity that’s involved in developing a software component. As
with CRC cards and use cases, creating a template in Microsoft Word or SmartDraw pro-
vides a convenient means of documenting your work. Figure 4.18 shows a blank opera-
tion specification.

Name

Responsibilities

Class

References (use case, req)

Notes

Returns

Preconditions

Postconditions

Figure 4.18
An operation specification refines the operations. (For more information, see
the reference for Craig Larmon at the end of this chapter.)

You can create an operation specification from an interaction diagram. Generally, it is a
good idea to create an operation specification after you have worked through most of the
high-level activities, such as creating sequence, collaboration, and class diagrams. The fol-
lowing points might be useful when you work with an operation specification:

= When you name a function or method (in UML, an operation), just copy the
operation call (message) from the class, interaction, or collaboration diagram into
the specification template. Chapter 3, “A Tutorial: UML and Object-Oriented Pro-
gramming,” provides a review of the syntax of messages.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

146

Chapter 4 = Software Design—Much Ado About Something

= You derive an operation’s responsibility from observing what the operation does in
the interaction diagram. The language does not have to be formal or even very
precise.

® A precondition is what must be true for the operation to work.

® A postcondition is what is changed after the operation is completed. According to Lar-
mon, postconditions usually fall into three categories: something is deleted or created,
an attribute is changed, or an association is created or broken (Larmon, 149).

Component/Package Diagrams

A final way of examining a class is to place it into a context with other classes. This is the
opposite of examining the internals of a class. Instead, you put it into a package or com-
ponent diagram and see how it works with other classes that compose a single subsystem.
Chapter 3 provides a review of component or package diagrams. When you examine the
software design description for Anhk (later in this chapter), you will have a chance to see
how the classes derived from the first stripe design effort are grouped into a component
diagram.

Presenting the System Design

The tools of design allow you to depict the design of the software system in different ways.
Being able to look at the system in different ways allows you to analyze and refine your
system to an extent that would not be possible without such tools. In addition to simpli-
fying your design effort, the tools of design allow you to meet the recommendations that
the Institute of Electrical and Electronics Engineers (IEEE) has set for how a software sys-
tem is to be portrayed in the software description. The IEEE standard dealing with such
descriptions is IEEE 1471. The standard calls upon software engineers to portray the sys-
tems they create from different viewpoints, but it does not specify which viewpoints
should be used. Generally, the viewpoints address different stakeholders in the software
product. Viewpoints meet the needs of users of the system, such as

= Developers of the system

= System users

® Those who purchase or take ownership of the system

® Those who have responsibility for maintaining or extending the system
In an object-oriented design effort, among the options for depicting the system are use
cases, interaction diagrams, package or component diagrams, and class diagrams. Use
cases define the system scope and its use scenarios. Interaction diagrams depict the behav-
ior of the system. Class diagrams depict static views of the system. Package diagrams pro-

vide a componential view. If you use these views of a system, you can satisfy the guidelines
that the IEEE has established for design description.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Presenting the System Design

The SDD Template

You can use the IEEE’s SDD template as a starting point for organizing the views you cre-
ate during your design effort. The best approach is to shape the document so that it gives
expression to the design and development styles your group or organization finds most
comprehensible. If you have specific stakeholders whose interests you must address, you
can fashion your document to accommodate their needs. You might want to include both
technical and nontechnical views, for example, and you might add use cases along with
diagrams. Here is a modified version of the IEEE SDD outline:

1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions and Acronyms
2. References
3. Conceptual View

3.1 Use Case

3.2 Diagram...
4. Behavioral View

4.1 Object Diagram 1

4.2 Object Diagram 2...
5. Logical View

6.1 Class Diagram 1

6.2 Class Diagram 2...
7. Component View

7.1 Diagram 1

7.2 Diagram 2...
8. Deployment View

How to Set Up the SDD

Appendix D (and the CD) provides an example of the SDD for Ankh. The way you set up
the SDD depends on your developmental and architectural styles. One approach involves
dividing the description into sections that mirror what are referred to as stripes. A stripe

TEAM LING - LIVe, Informative, Non-cost and cenuine !

147

148

Chapter 4 = Software Design—Much Ado About Something

is one iterative implementation of a game. It is characterized as a design entity that rep-
resents a functional subset of the game. Stripes characterize the development effort. A
number of justifications exist for following this approach:

= If you divide the architecture according to the ways you iteratively and incremen-
tally implement it, then the document serves as a guide to both the overall archi-
tecture of the game and the way the game is implemented.

= In addition to allowing you to inspect the design from different use perspectives,
components that are based on stripes enable you to break the description of differ-
ent classes into manageable and understandable wholes. Every feature, in other
words, can be described from the point of view of the responsibility it fulfills;
therefore, empty itemizing is not likely to be a problem.

= When the design effort uses stripes, you incrementally move toward a comprehen-
sive grasp of the entire system. At the same time, you discover both functionality
and features that might be redundant. If you use stripes, you start from what is
simple and move toward what is complex. The arrangement of the SDD can
progress in the same way, making the document easier to comprehend. This can
prove especially valuable to developers who might inherit the system during future
mod or maintenance efforts.

Even if you do not decide to divide your document according to incremental stripes, it still
stands that the IEEE recommends division into different views. The following sections
provide descriptions of these views. Later on, you'll see the process used for developing the
information that fits into these views. The views that are common to most interpretations
to the UML are logical, component, implementation, use case, and deployment. Figure
4.19 provides a summary of the SDD views.

Introducing an SDD

The SDD template shown previously begins with an introduction that includes para-
graphs on purpose, scope, and definitions of terms and acronyms. In the purpose section,
you tell the reader what you think the SDD offers. You are talking about the purpose of
the document, not the game. For the scope, help the reader understand the scope of the
document. Scope relates to the information that the reader can expect to obtain from the
document. In the glossary and definition section, you should list any terms that apply
specifically to the game software or its design. Generally, be on the lookout for terms that
people ask about during the design effort.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Presenting the System Design

G

Logical

Show the static architecture
through class and object

diagrams.

(

Implementation
Show how messages flow
between objects and the
interfaces that sustain the
messaging structure.

\

J

Component
Show developmental stripes
of the system. Heuristically
reveal its features from least
to most complex. Show the
development process.

Bm
L

03 B3
o I o Y |

_

J

_

Use Case
Provide contexts for the
requirements of the
system and relate the
responsibilities of each
entity.

J

Deployment
Show how the system can
be delivered. Provide a
basis on which to
understand the system as a
managed undertaking.

_ J

Figure 4.19

Design views address different stakeholder priorities.

You can also add supplemental information to the introductory section. In the SDD for
Ankh, a section refers the reader to the requirements and other documents that contribute
to the design effort. If you set up the SDD early on with hyperlinked references to other
documents, your design work can proceed much more smoothly than otherwise because
you will not have to search through directories for the relevant resource material.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

149

150

Chapter 4 = Software Design—Much Ado About Something

Conceptual or Use Case View

This view of the system ensures that nontechnical readers of the design description can
benefit from reading the design description. On the other hand, all stakeholders can ben-
efit from the use case view. Among those who might be named are play testers, software
testers, customers, game designers, software designers, graphics developers, and software
developers. In addition, a use case can provide a way to establish the scope of a given com-
ponent, module, or stripe. Generally, a use case view (in the form of a narrative or sce-
nario) should accompany each stripe description.

Behavioral or Implementation View

The implementation views in the Ankh SDD reflect the architecture developed using
stripes. Implementation views can be depicted using class diagrams, object diagrams,
activity diagrams, state diagrams, sequence diagrams, and collaboration diagrams.
Generally, any description of the system that aids in the implementation effort is suitable
to include under the implementation heading.

Logical View

The logical views that are most useful are static object diagrams and class diagrams. Class
diagrams can work on both high and low levels. Generally, you should create a static
object view of each component. For the design effort for Ankh, this involved creating a
class diagram for each stripe. A stripe is the functionality that represents a set of use cases
or requirements that have been selected for a given design iteration. The approach used
for Ankh involved designing the entire system using stripes and beginning the first itera-
tion of implementation after all the named requirements had been accounted for. The
number of logical or static object views provided depends on how many stripes you need
to fully design and implement the system.

Component View

Package diagrams show the collections of classes that fall under each stripe. This is a com-
ponent view. The fact that different stripes might use the same classes is not an issue.
Stripes collect the functionality of the system in different ways. Stripe 2.1, GUI Objects,
differs from Stripe 2.3, Floor Tiling, which provides the basic framework for layers. Both
stripes use a common set of classes. Both use different facets of the interfaces that the
classes offer, however, and this is where redundancy can be justified. Describing different
facets of use under more than one component view makes it easier for readers to under-
stand relationships between components.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Designing the System in Stripes

Deployment View

To show how your system is deployed, use a component diagram or a deployment dia-
gram. Chapter 3 discusses these two types of diagrams. This chapter doesn’t show how to
create such diagrams because it focuses on design. In Chapter 17, however, you will find
detailed coverage of release management. Generally, the deployment view can also, in
part, reflect the stripes in which the product has been developed. One component, for
example, can contain all the functionality of several stripes, but at the same time, subsys-
tems that address different groups of functionality (game, Internet, tools, and so on) can
represent both different stripes and different component and deployment groupings.

Designing the System in Stripes

The Ankh development effort involved an approach that was iterative and incremental. At
the center of this process is the notion of a system stripe. A stripe embodies a subset of the
functionality described in the requirements document. Generally, the first stripe consists
of only the most general system features, such as the framework of the game. With each
successive stripe, the features addressed become more refined. The level of detail and
complexity grows with each stripe, but because the detail and complexity are layered, at
no point does complexity become overwhelming.

Increments and Iteration in Stripes

Notions about stripes can be derived in part from an approach to development known as
prototyping. Prototyping involves quickly and cheaply developing part of a system for pur-
poses of inspection, risk analysis, or customer understanding. Because developers devel-
op prototypes to be thrown away, prototypes usually lack all but the most rudimentary
quality measures. They are literally thrown together. The problem with prototypes begins
precisely at this point. Although prototypes are thrown together to allow developers and
customers to visualize concepts, they can end up as part of the end product. This is like
having an unbaked brick at the base of a tall tower. The results prove dismal to recount.

The approach to stripes used in the Ankh effort calls for designing all stripes before begin-
ning software construction. Using this approach, each stripe opens the design process to a
degree of creativity that is not possible if too much emphasis is placed on the whole system.

The game software industry abounds with stories about how game software developers
discover relatively late in the development process the one feature that makes a game a
success. Development is not a linear process. On the other hand, things like feature creep
and goldplating regularly derail game development efforts. The compromise is to make
room for a game design to be extended at regular, controlled intervals. If someone dis-
covers a valuable feature, it becomes possible to assess risks and schedule the inclusion of
the feature even though it might not have been a part of the original requirements set.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

151

152

Chapter 4 = Software Design—Much Ado About Something

Figure 4.20 illustrates some of the features of stripe-based development. The general out-
lines of this approach might be familiar to someone who has had some experience with
the Rational Unified Process or the Agile Process. The basic description of the iterative
approach to development goes back, however, more than 20 years, to the spiral develop-
ment models introduced during the 1980s.

Stripes

A

7 3

A
3
23

\
Integrate

Implement
T—‘ Analyze Risk [«

Design <—|

Figure 4.20
The striped-based approach to development involves incremental and iterative implementation efforts.
First the whole of the system is designed, but it is divided into components that address stripes.

Team Efforts at Designing System Stripes

The stripe approach to development assumes that you complete a set of requirements and
develop a design for the whole system prior to starting implementation work on the first
stripe. After you have made at least one pass over all the requirements and generated a
rough initial design of the system, you start implementation work on the first stripe.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Designing the System in Stripes

note

If you want to begin implementation on a stripe right after you have designed it, just remember
that hidden dependencies lurk within any incomplete design. If you implement too early, you might
have to perform extensive rework.

Your work on the first stripe involves selecting and refining the requirements and devel-
oping a design for the stripe. As Figure 4.20 shows, after you complete a first iteration of
design work on the first stripe, you then start work on the second. For each stripe, you
select a set of requirements that you believe cover the stripe, you select a group of CRC
cards for the classes you think cover the requirements, and using what you consider to be
the appropriate use case(s), you then begin to generate a design. Start by creating a basic
object diagram with a tool like SmartDraw. If you can project the diagram onto a screen
for the team to view and discuss, you will find that the work goes much better than if you
try to use paper. Have copies of all your basic documents on a laptop so that they can be
projected on a screen. Then you can grab information quickly for display whenever any-
one needs it.

To refer again to Figure 4.20, for example, you first move through the requirements and
high-level design of all the stripes before you return to stripe 1 and begin work. At that
point, you begin development. You work through risk analysis, design, implementation,
test, and integration (or deployment), and your work results in an incremental phase of
the game. When you have completed this release, you then move to the next, increment-
ing and iterating until you reach the full scope of the game and can account for all require-
ments. (Ankh consisted of 19 stripes.)

To determine stripes, begin with your use cases and decide what comes first for you. You
should try to implement first either the general framework of the system or features of the
system that you feel present especially high risks. High-risk features can be implemented
in test harnesses and later folded into the game framework. If you begin with a framework
(as was the case with the Ankh development effort), you might view your work as moving
from greater to less risk. Another approach might involve establishing the framework first
but then undertaking to develop risky features. Figure 4.21 shows the basic steps of the
Ankh design effort.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

153

154 Chapter 4 = Software Design—Much Ado About Something

> Create
component
diagram
> Design
classes
Select use)
Create c_ases/ Requirements
interaction requirements
diagrams
A
Determine <
| stripe
Create context
diagram <
Figure 4.21
Iterate through strip designs until you have a set of components that address the complete scope of

the game.

A First Stripe from Ankh

Following is the five-step process to generate the content of the software design description:
1. Select requirements and use cases for the stripe and create a unifying design use
case.
2. Create a context diagram for the design use case.

3. Create sequence and collaboration diagrams to explore the scenario of the design
use case.

4. Create a class diagram to provide a logical view of the stripe.

5. Create a context diagram to show the stripe in relation to other stripes.

Excerpts from resulting software design description are available for your inspection in
Appendix D. (The entire document is on the CD.) You might want to open this document
as you read this portion of the text.

Figure 4.22 illustrates the four activities that are involved in creating the design document.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

A First Stripe from Ankh

Implementation View

Add or update a
component in the
component diagram

A

Component View

\ 4

Select use cases
and requirements

Iterative
development of
the sections of the
software design
document

Add classes and
operations to the
class diagrams

Use Case View

A

y

Create sequence and
collaboration
diagrams

Logical View

A

Figure 4.22

Class or logical diagrams grow from other work.

Beginning a Stripe

To begin a stripe, the Ankh development team started with the following documents,
which were all open for display on a large screen using a projection device attached to a

laptop computer:

m The CRC cards in tabular form in a Word document with a hyperlinked table of

contents for quick access.

® The game design document, which was kept at hand as a way of having direct
information about the game in case the team needed to expand a bit on a given
use case or, for that matter, settle a dispute by generating a new use case.

m The Ankh Software Requirements Specification set to section 3 so that the team

could quickly view all the requirements statements.

= A new project open in SmartDraw, with the UML tool pallet open for creation of
class, object, and interaction diagrams.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

155

156

Chapter 4 = Software Design—Much Ado About Something

note

In the first section of the SDD, references to all the associated documents are provided. This makes
it much more convenient to develop the SDD. Project the documents onto a screen. Work as a team
and move from document to document as team members pursue ideas. In Windows, you can use
the Alt+Tab option to go from document to document as needed.

At first, the team debated about what portion of the game to develop first. The team
decided it wanted to start with a rudimentary implementation of the framework.
Members talked about the splash screen and the menu. They drew a rough system context
diagram for these two areas of interest and found that they provided good material for a
first stripe. The team then decided to set up a use case for the design effort.

The Use Case for the First Stripe

The use case the team developed for the design of the first stripe is included in Appendix
D. The title of the use case is Select Exit at the Game’s Start. Note that this use case does
not constitute a modification or addition to the requirements list. This use case is for the
design effort alone.

Use Case: Select Exit at the Game’s Start

This use case is triggered by the closing of the splash screen. The system
shows the basic game window. The system displays the main play options for
the game. The player views the options: New Game, Load Game, Continue,
Change Profile, Options, Exit. The player chooses one option: Exit. The sys-
tem acknowledges the choice. The system requests the user to confirm the
choice. The user confirms the choice. The system exits. This use case ends
when the system exists.

Starting with a Context

After generating an initial use case for the stripe, the team searched the requirements list
to find those requirements that corresponded to the design use case. The team searched
through the TOR chart, the CRC cards, the requirements statements, and the use cases
time and time again. Team members were careful to continually review assumptions
about responsibilities even though these responsibilities were established in the CRC
cards. At last, the team arrived at a definitive list of the requirements the first stripe would
cover. The requirements involved in the stripe are as follows:

m Req 8 (Software shall have a main menu that will have a load replay option.)
® Req 16 (Software shall support a custom mouse pointer.)

m Req 18 (Software shall support panels, menus, buttons, sliders, text boxes, and
pictures.)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

A First Stripe from Ankh

m Req 38 (Software shall support a main menu with these entries: New Game, Con-
tinue, Change Profile, Options, Exit, Editor, and Load Game.)

® Req 46 (Software shall load in no more than 20 seconds and display a progress bar
or some other indicator that loading is in progress.)

® Req 14 (Software shall run only in full-screen mode.)
m Req 15 (Software shall support Alt+Tab key combinations.)
m Req 17 (Software shall support alpha channels.)

The list of requirements addressed was not easy to discover. A good deal of debate took
place. The team also spotted some weaknesses. Because the team had all the documents
open, however, it was easy to go back and forth between the documents and spot irregu-
larities. The team updated things as it went. Turning on the Track Changes capability of
Word gave more cautious team members a sense of security; they were not comfortable
with changing anything on-the-fly.

Discovering a Component

To show you how the team worked with the problem of developing views of the first
stripe, it is possible to present some “in progress” diagrams. The value of showing the lack
of perfection is to reveal the extent to which the design process can be viewed as experi-
mental or heuristic. In other words, one thing you can gain from design work is knowl-
edge of the system to be built.

note

If you have explored different approaches to development, you might be familiar with the Agile
Process approach to design. According to this perspective, requirements and design should be an
active, living process mingled with the implementation effort. The approach used for the Ankh effort
differs from the Agile Process. Still, this chapter includes references to texts on the Agile Process.

The Ankh team’s approach was to have the whole team work on the design effort. The
team developed the SDD as it went, building its content on a projected screen. The team
also set all the diagrams in SmartDraw projects. From there, it was easy to transfer them
to the SDD. A team member refined the work afterward. Following a final review, the dia-
grams could be folded into the design document. (See Appendix D or the CD.)

The team used a context diagram to supplement the use case for the first stripe. This prac-
tice was not used very often in subsequent stripes. Dashed relationship lines were used to
maintain a sense that the diagram shows tentative relationships. The object at the base of
the arrow might contain a reference to the object pointed to. Figure 4.23 shows the Stripe
1 context diagram.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

157

158

Chapter 4 = Software Design—Much Ado About Something

> CState
Hal CStateMachine [«
: proenmnmnmnnnn o »| CFileMgr
: A :
: : T ERCLCERCTTEECEERFEREEE »| cauMgr
: CHistory : I
: A ' : 5
: : ' e » ClmageMgr
R cGame leeoooon.. - ---%1 CSoundMgr
v : T o
Cinput ""'I . ' - ' ' ':* CMusic
o P10 --a CProfile
E : : : EEREE > ClLog
E . ------ l . R > CPlayer
v A4 .
CGraphics CCamera CAI

Figure 4.23
The Stripe 1 context diagram for Ankh seeks only to show tentative relationships.

Moving to a Scenario

The next step involves looking closely at the design use case and recasting it slightly so that
it becomes the basis of a sequence diagram. To create the sequence diagram, the team
looked closely at each candidate object. (All objects are addressed at this point as generic
objects, so the class names are preceded by a colon.) The team started out by including
some unneeded classes in the sequence. For example, it had a CGraphics class, and after

TEAM LING - LIVe, Informative, Non-cost and cenuine !

going back and forth over how this might fit into the initial scenario, it decided to drop it.
Figure 4.24 illustrates an early iteration of a sequence diagram for the first stripe.

A First Stripe from Ankh

Start()
% —>[:CGame ” CGUIMgr” :CButton][CStateMachme][CMenuState”CMenuDualod[:Clnput][CImageMgr” :CWindow

Player

X ___________ |

LoadWindow()

CStateMachine::EnterState(str)

CStateMachine::Run()

Eegister(CGUlObject)

[Loop whole thing]

CMenuState
::OnLoad() _

»[—] CMenuDialog
::OnLoad()

Register(str):pCSprite

A 4

CGUIMgr
:OnClick()

CMenuState

:0OnClick()

CMenuState
::DoFrame()

Clnput::Update() 1

\ 4

 CStateMachine::OnClick()

\ 4

CButton::OnClick()

<
<

CStateMachine
:EnterState(EXIT)

CGame
cExit()

—

-—

>
e

Figure 4.24

Use CRC cards and use case scenarios to create sequence diagrams.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

159

160

Chapter 4 = Software Design—Much Ado About Something

Stripe Collaboration Diagram

The collaboration diagram for the first stripe allows the team to refine the names of the
operations and arrive at a clearer visual representation of the operations that each class
contains. When you move from a sequence diagram to a collaboration diagram, if you are
not using a CASE tool, you might need several iterations before you refine the operations
to the point that the flow of activity for the stripe becomes evident. With a CASE tool, you
might tend to overlook the value that the difference of the two diagrams provides.
Generally, improving a design involves changing the design and seeing the difference that
the change makes. In this way, you incrementally view and improve the design. Figure 4.25
shows the collaboration diagram.

1.LoadWindow() 14:0OnClick()
:CWindow
A4
6.Register
% .CGame | :CButton | | :ClmageMgr g 0
Player 7y
3.Exit! . ;
0 15:EnterState() | {CMenuDialog
2.Run() 9.DoFrame() 4 4
7.0nEnter()
4 4 4.0nLoad() ¢ y
11:0nClick() >
> 2.1.EnterState() 5.0nLoad()
10.Update() :CStateMachine > :CMenuState
- 2.2.Run() R
v 12:0nClick() | 8.Register(CGuiObject)
:Clnput
| SAneut | A 4 \ 4
| 13:0nClick()
:CGuiMgr
Figure 4.25

The collaboration diagram helps refine the flow of messaging.

As you refine your collaboration diagrams, you might find it beneficial to use operation
specifications, which were discussed earlier in this chapter. Although operation specifica-
tions are often considered part of the implementation phase, they can be useful during
design as a way to explore the conditions that preceded or follow a given message (or
function or method call).

Refining Operations and Generating Classes

A class diagram is a static view of the classes that occur in a given component of the sys-
tem. Class diagrams appear in the section of the SDD that’s dedicated to the logical view
of the component. Because the static representation of a class incorporates information

TEAM LING - LIVe, Informative, Non-cost and cenuine !

A First Stripe from Ankh

from a number of components (called stripes), the cycle of development for the class dia-
grams is slower than the cycle of development for the interaction (sequence and collabo-
ration) diagrams. Any given stripe is likely to make use of only a limited number of the
operations of the classes it uses.

Given participation in multiple stripes, each class is likely to possess more operations than
are used by any one stripe. For this reason, you are not likely to complete any particular
class diagram until you have completed the design of all the stripes of the game. On the
other hand, you can begin work on a class diagram as soon as you start the first stripe.
With each iteration, you add information to your class and component views. Class dia-
grams grow with each iteration of the design effort. By the time you reach the final stripe,
you can fairly safely conclude that any classes in your proposed class list that have not been
included in one or another interaction diagram are not needed.

Figure 4.26 provides an early, preliminary view of a starter class diagram for the first
stripe. Note that it was possible, at this point, to fill in only a limited number of opera-
tions. With each new stripe, however, the team had a chance to revisit the class, refining
its definition as it went. Generally, a rudimentary diagram is enough to get you started.
Iteration fills in the details.

CMenuState
OnLoad()
OnEnter()
CGame CStateMachine Clnput
Exit Run() Update
0 EnterState() P 0
OnClick()
CMenuDialog CGUIMgr CButton
OnLoad() Register() OnClick()
OnClick()
ClmageMgr CWindow
Register(str):pCSprite LoadWindow()

Figure 4.26
Class diagrams receive refinement with each design iteration.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

161

162

Chapter 4 = Software Design—Much Ado About Something

Creating the Component Diagram

The final section of the SDD for this stripe is the component diagram. A group of classes
developed during a stripe can be referred to as a component. To illustrate the component, the
UML package diagram can be used. The package (file folder) element shows that classes for
this stripe are grouped into a single unit. Figure 4.27 illustrates the Start Game component.

Stripe 6 |

Stripe 1: Start Game

=

| Stripe 5 |

I |
| |

Stripe 2 | Stripe 3 | Stripe 4 |

Figure 4.27
The component view provides a starting point for design validation.

Notice in Figure 4.27 that empty packages have been included to depict other compo-
nents. The other components serve as placeholders at this point. In subsequent iterations,
packages can be added to the first stripe to show the dependencies and relationships that
characterize each successive stripe. In this way, the design can be iterated and the work on
stripes shown.

Verification

In this chapter, the discussions of verification and validation are restricted to a few simple
observations that are revisited in Chapters 6, “Object-Oriented Fantasies and Realities,”
and 7, “P Is for Pattern.” The first observation is that the primary way to verify the quali-
ty of a design is to see what happens when alternative design schemes are used. For the

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Conclusion

Ankh development effort, this involved building the product using a series of stripes.
Before each implementation effort, the design of each stripe was inspected.

The design views offer a collective view of the system. They represent one architectural
interpretation. But the fact is that many architectural styles might be applied to the sys-
tem. It is possible to show the appropriateness of a given architecture if you critically
assess the way classes are grouped. An excellent approach to this is to begin examining the
initial design groupings using patterns.

Conclusion

This chapter discussed the design process. The aim was to show you one approach to
design: the one used in the development effort for Ankh. This design was based partly on
some industry-standard approaches. It is not contended that you should use this one
approach. Rather, the approach is suggested. When you develop your own approach, you
can consider the style of your organization and move forward from there.

Most companies have something resembling a design effort in place. Some tend to merge
requirements analysis with design; others keep the two separate. The most mature orga-
nizations continuously seek to improve the performance of their software by scrutinizing
the assumptions their designers and developers have made about the architecture. Each
design effort provides the opportunity to improve on the architectural style. One of the
most important results for software engineers is, of course, the game engine, and many of
these are now available for purchase by organizations that do not want to develop their
own. Groups that want to continue to occupy dynamic leadership positions in the mar-
ket, however, must have in place a design process that draws upon the skills of those who
are most directly involved in the engineering effort to develop state-of-the-art software.
The process offered here provides a possible inroad to such an effort.

Hundreds of texts have been published over the years on software design. The list that fol-
lows provides you with nonacademic views:

Albin, Stephan T. The Art of Software Architecture: Design Methods and Techniques.
Indianapolis, Indiana: Wiley Publishing, 2003.

Larmon, Craig. Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design. Upper Saddle River, New Jersey: Prentice Hall PTR, 1998.

Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, New Jersey: Pearson Education, Inc., 2003.

Richter, Charles. Designing Flexible Object-Oriented Systems with UML. Indianapolis,
Indiana: Macmillan Technical Publishing, 1999.

Witt, Bernard 1., E. Terry Baker, and Everett W. Merritt. Software Architecture and Design:
Principles, Models, and Methods. New York: Van Nostrand Reinhold, 1994.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

163

CHAPTER 5

OLp Is Goob—THE
LIBRARY APPROACH

mously, depending on the type of project you undertake. From the perspective of

software engineering, a library can consist of such things as code snippets, opera-
tions, classes, data structures, algorithms, frameworks, patterns, precompiled compo-
nents, documents, or just about anything that might be used repeatedly during multiple
development efforts. The key term, then, is reuse. A library serves as a vehicle of software
reuse. The question then arises as to what makes something related to software reusable.

3 library is a collection of resources. The description of the resources can vary enor-

Although answering this question is the purpose of this chapter, the topic proves to be
much more extensive than this book can cover comprehensively. Still, it is worth trying at
least to isolate a few basic ideas. Toward this end, this chapter first identifies the pathways
of reuse. It then delves into how software can be made suitable for reuse. Following are
among the points touched on along the way:

= Why developers find reusing software worthwhile

m The general ways in which software can be developed specifically for reuse

= How software can be wrong for reuse

= How software that is wrong for reuse can he changed so that it becomes appropri-
ate for reuse

= What prevents software developers from more frequently or profitably reusing
software

Libraries and Reuse in General

A software library consists of a body of code that developers can reuse. Reuse results from
both planned and unplanned development efforts. On the planned side of reuse, one of

TEAM LING - LIVe, Informative, Non-cost and cenuine !

165

166

Chapter 5 = Old Is Good—The Library Approach

the most common types of library is called an application framework. An application
framework is designed to provide developers with a set of code that enables them to devel-
op a specific type of application. Examples of such efforts are the MFC library, the Win32
API, and the Java Swing classes. These application frameworks allow developers to devel-
op Windows applications.

In other instances, libraries do not result from a planned development effort. Instead, they
result from the efforts of developers to save and perfect code for reuse. Because no design
effort precedes the development of such libraries, the code simply accumulates over time
until, somewhat ironically, it might become a resource for planned development efforts.
If such libraries are preserved and refined, documentation can be added, and the code can
be reviewed and rewritten to be useful in more general, robust ways.

Game engines fall into both the accidental and the planned categories. If you are a pro-
grammer who has been working for several years, it is likely that you have a large store of
code you work from whenever you begin a new project. The code you offer does not nec-
essarily represent a complete product, but it does offer parts of a game.

Games that have met with success can also become a source of reusable code. Several game
development organizations have made their game code available on the web. In most
cases, programmers who are not developing for commercial gain can in this way have
access to compete game architectures. In some cases, even if commercial gain forms part
of the picture, the code is still available without cost.

Among the Internet sites that might prove useful as general information resources for
game code are the following:

= thefreecountry.com (http://www.thefreecountry.com). A general resource site for
programmers, webmasters, and developers who are involved with security issues.

= flipcode (http://www.flipcode.com). Game development news and resources.
Good links for DirectX resources and tutorials.

= Digital Games Research Association (http://www.digra.org). Necessary to register
first, but you can then download resources and tutorials.

= Game Development Search Engine (http://www.gdse.com). Provides numerous
links to code libraries and tutorials.

= GameDev.net (http://www.gamedev.net). Provides multiple links to code sources,
tutorials, articles, and other resources.

®= CPP-home.com (http://www.cpp-home.com). Provides a large store of tutorials
and accompanying source samples. Strong on Win32 and C/C++.

= Game Tutorials (http://www.gametutorials.com). Immediate links to a wide vari-
ety of code libraries for nearly anything related to basic game development. Offers
tutorials.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Libraries and Reuse in General

= Game Foundry. Source Forge (http://gaming.foundries.sourceforge.net). Pro-
vides direct access to a multitude of open source games. The available material
overwhelms you at first, but after a time, you can begin to identify specific targets.

This list presents just a few among hundreds of sites where you can obtain resources for
C++, DirectX, OpenGL, and a variety of other tools for game development. These
resources together constitute an enormous Internet library. Your best bet is to assemble a
personalized list of sites you find most useful.

Open C++ Libraries

The Standard Template Library (STL) and Boost offer two of the richest free libraries avail-
able to C++ programmers. The STL has been a standard part of C++ since its formalization
by the ISO in 1998. Use of the library has become a core element for most programmers
working with C++.

The Boost library offers a large collection of highly respected resources for C++ develop-
ment. Unlike the STL, the Boost library is not standardized. Still, it is well-maintained and
provides valuable resources. Among its offerings are a string class that combines capabil-
ities of the STL and MFC string classes and a variety of hash containers. (The STL does
not provide a hash class.)

The following short list provides the names of Internet sites that offer information on the
STL and Boost:

= Standard Template Library Programmer’s Guide (http://www.sgi.com/
tech/stl/index.html). A guide to the STL sponsored by Silicon Graphics, Inc.

= ACM Crossroads Student Magazine Introduction to the STL
(http://www.acm.org/crossroads/xrds2-3/ovp.html). A quick overview of key
components of the STL.

= Boost (http://www.boost.org/). With a few exceptions, the Boost libraries are
compatible with the C++ STL. In fact, the Boost organization provides a center to
which developers who are developing classes or other resources that might some-
day be included in the STL can lodge their material for peer review.

Game Engine Libraries

The Internet offers access to thousands of game engines at any given moment. Two gen-
eral approaches to use characterize most of these. On the one hand, you can download the
code, without cost or obligation, and begin hacking at it for learning purposes. On the
other hand, you can acquire the code through a license. One type of license is proprietary.
Another type is open source. Generally, whether proprietary or open source, the licenses
tend to be either free or of minimal cost if you develop a game for personal learning pur-
poses. When you enter the market, however, the conditions and fees stiffen.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

167

168

Chapter 5 = Old Is Good—The Library Approach

If you acquire an engine according to open source provisions, you pay nothing to use it.
On an open source basis, the license you agree to when you download the source stipu-
lates requirements along the following lines:

= If you modify the code, you agree to release your modifications to the engine and
any of its accompanying tools for use by others.

= You are usually asked to retain a disclaimer in the code or display a logo in a
prominent place within the game.

= If a logo, disclaimer, or license statement forms part of the open source agreement,
the agreement requests that you refrain from modifying or deleting it.

If you want to use the software without these requirements, you can purchase a license.
Prices for licenses vary enormously. Some sell for a few thousand dollars (U.S.), whereas
others run much higher.

Among the features that might serve to recommend a game engine are the following:

= Demo applications. You should be able to acquire a few demonstration applica-
tions with the engine when you download it. Generally, with respect to the demon-
stration applications, you should be free to do whatever you want with them.

= Companies that use it. You should be able to obtain a list of companies that
develop products using the engine. A list of customers or users usually appears on
the engine site. It is not always the case that a good engine will have many users,
but if no one uses the engine, you should be suspicious.

= Documentation. Before you decide to invest your time and effort in trying to
make use of an existing body of code, spend some time studying its documenta-
tion. If you cannot make sense of the documentation, consider going elsewhere.

= A user group. A user group or forum is likely to exist for any engine that has
received general recognition on an open basis. The Quake engines, for example, are
everywhere, and many developers on many different sites provide each other with
mutual support concerning use and abuse. For commercial engineers, of course,
the engine vendor formalizes support and markets it as part of the product.

Profiled Engines

Sifting through the large number of sites that provide game code and engines proves a
tiresome task. Still, the time you spend searching can yield worthwhile results. Although
most of the resources are probably not useful as the basis of a commercial undertaking,
for students and hobbyists, the resources can be genuine assets. Among the sites that pos-
sess strong potential for students, hobbyists, and even professionals are the following, all
of which feature C/C++ engines that support DirectX or OpenGL on either a Windows
or a UNIX/Linux platform.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Libraries and Reuse in General 169

® Quakel.LNET. Quakell.NET requires Microsoft Visual Studio .NET 2003. This ver-
sion of Microsoft’s 2003 compiler is roughly 98 percent compliant with the ISO
standard for C++ compilers. The engine was ported to this platform to demon-
strate its compliance. If you have this version of the compiler, you have an excel-
lent version of this fairly robust engine (http://www.vertigosoftware.com/
Quake2.htm).

= Sierra (SCI) Studio. The SCI Studio was used to create games such as King Quest,
Space Quest, and Quest for Glory. You can use this engine on Windows 2000 and
XP. In addition, the site provides documentation, tutorials, and scripting tools. You
can obtain a demo game, also (http://www.bripro.com/scistudio).

= Heretic and Hexen. Raven Software and its affiliate id Software allow you to obtain
the source code for Heretic and Hexen for free if you are not developing for profit
(http://www?2.ravensoft.com/source).

®m Quake III Arena, Quake III Team Arena, Quake II, Quake. This is the combined
source code for Quake III Arena and Quake III: Team Arena. It contains project
files and related game source code. The code is for Win32 (http://www.idsoftware.
com/business/techdownloads).

= Crystal Space free 3D Engine. Crystal Space is an open source 3D engine written
in C++. Among its features are colored lighting, mirrors, 3D sprites, alpha trans-
parency, true six degrees of freedom, procedural textures, radiosity, particle sys-
tems, halos, 16-bit and 32-bit display support, Direct3D support, font support, and
hierarchical transformations (http://crystal.sourceforge.net).

= ClanLib Game SDK. This development kit handles sound, display, input, network-
ing, files, and threading and is developed for Linux and Windows. It handles 2D
display, sound and input support (keyboard, mouse, joysticks), and network sup-
port. For 3D support, it uses OpenGL (http://www.clanlib.org).

= Pathlib. Pathlib is a C library for finding optimal paths for objects in a map, tim-
ing objects and their movements, detecting collisions, and resolving deadlocks
(http://pw2.baf.cz/pathlib/pathlib.html).

= ColDet 3D Free 3D Collision Detection Library. ColDet is a free 3D collision
detection library. Versions are available for use with Microsoft Visual C++
(http://photoneffect.com/coldet).

= id Software’s Wolfenstein. This is the 3D engine that underlay id Software’s
Wolfenstein (ftp://ftp.idsoftware.com/idstuft/source/wolfsrc.zip).

Criteria for Reuse

Thus far, this chapter has looked at libraries that already exist, but another perspective
remains to be developed. This perspective involves the libraries you might develop on

TEAM LING - LIVe, Informative, Non-cost and cenuine !

170

Chapter 5 = Old Is Good—The Library Approach

your own as either an isolated developer or as a member of a team of developers. When
you consider the topic of what code you or your team might want to reserve for reuse, a
fairly large number of questions arise. As you answer these questions, you discover many
subtle points about why code resource libraries succeed or fail.

A key feature of reuse is that the code you write should conform to the criteria established
for standardized libraries. Such criteria relate to every field of software engineering, and it
is impossible to cover them all in a single chapter. However, following are some address-
able notions:

= Requirements analysis enables developers to develop classes that address excep-
tional situations or can be extended readily into anticipated uses.

® Design allows classes to be structured with minimum dependencies.
= Documentation provides users with clear explanations and examples of use.
= Testing shows ways in which classes can be optimized or deoptimized.

= Configuration provides information on how a program can be structured so that
components can be removed or updated.

Aside from specific software engineering topics, the general observation can be made that
well-crafted code almost always readily qualifies for reuse.

What Qualifies for Reusable

Whether or not code is designed to be reusable, the fact of its reuse can be explained fair-
ly readily. The reasons are ultimately numerous, of course, but here are four starting
points:

= Available. First, code is reused because it is available. In other words, when a pro-
grammer has a problem to solve and knows of the existence of code that solves the
problem, he is likely to find the code and try to make it work in the new context.
At the heart of this type of reuse is knowledge of the code and the ability to find
and adapt it.

m Correct. A second quality that makes code reusable is that it has been shown to be
correct. Code that repeatedly provides a simple service, such as a reliable sorting
algorithm, becomes a solid resource that can be identified and used according to
the function it performs. No change in the code is needed. Rather, the programmer
simply uses it as is. As long as a given problem must be solved, the code that reli-
ably embodies the algorithm that solves the problem has a place in the develop-
ment effort.

= Current. The third quality of reuse fits with the second. Programmers reuse code
when they find that it fits in with their current development effort. They likewise
reject code that does not. In this respect, for example, code for a sound library that

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Libraries and Reuse in General 171

caters only to 8-bit sound files might not be regarded as a strong candidate for
reuse on a 32-bit platform that incorporates MPEG sound.

= Immediate. The final quality of reuse is that developers can use the library imme-
diately without having to modify the code it provides. This is the great virtue of
the services in the Boost and STL libraries. Programmers can import and use these
libraries with relative ease in both Windows and UNIX efforts. This is possible
because both libraries have been developed using standard C++ and have been
thoroughly tested. Generally, unless programmers seek to optimize them, such
libraries require no change or adaptation in a standard C++ development setting.

The Problems of Creating Reusable Code

Not all code qualifies as reusable. When you consider whether to copy code to or from a
library, you benefit if you ask a few questions. Among these questions are the following:

® It is worth it? This might seem a strange question to ask, but failing to ask it can
lead to dire results. The simplest context for understanding this question arises
with a piece of code that addresses an uncomplicated but nevertheless specific task
and can be written in, say, anywhere from a few minutes to a few hours. In such
cases, it might be best to rewrite the code rather than trying to find a library com-
ponent that serves the same purpose.

= Does the effort required to refine code for reuse yield a profitable return? This
question involves a bit of cost-benefit analysis. When you fashion code for reuse,
the code you fashion usually requires more documentation and testing than other
code. The reason for this is that you want to make the code so that many people
can use it in many contexts. To provide for such use, you must test the code in the
contexts in which you think it might be used. This effort consumes time. It be-
comes necessary, then, to consider whether the code ever will, in reality, receive
use in multiple contexts. If you are unable to name at least a few of these contexts,
refining the code and placing it in a library might not be worth the effort.

= Can the code be maintained? This is a question that people need to ask about
almost any software, but it has special bearing on code that is designed for reuse,
because such code stands alone as its own product, apart from any deliverable it
might be made part of. Do you have time to maintain a library in addition to
developing the application in which you initially use the components of the
library?

= Can you find it after you make it a part of the library? When you create reusable
operations, you must be able to identify them later on if you are to make use of
them. For this reason, you face the problem of how to design the library so that its
interface is easy to understand and so that the documentation that the library
includes clearly addresses its services and contexts of use.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

172 Chapter 5 = Old Is Good—The Library Approach

= Is the library legal? Issues of legality can arise if the library you are developing or
want to develop includes components from libraries that you have purchased. If
the purchased libraries are of a proprietary or open source form that stipulates
they cannot be made a part of another library, your efforts at constructing a
library could be legally hazardous. If you cannot develop a library that is free of
dependencies on other libraries (besides the STL or Boost), you might want to
reconsider your efforts.

= Does the code have a large number of contexts of use? If the code you develop
cannot be used in a number of different ways, toward a variety of different solu-
tions, it is probably not worth trying to shape into a library. If you maintain a
library of snippets, you might find that in specific situations you remember that
a piece of code you once wrote can be brought forward and refashioned to address
a similar problem. Cutting and pasting a bit of old code into a new context differs
from identifying a generalized pattern or context of use and then writing code so
that it addresses such use.

= Can you write code so that it can be reused in ways that you might not antici-
pate? In some ways, this is the hardest question, and it defines a characteristic of
the best libraries. Code written to anticipate changing use scenarios is both robust
and extensible. The mechanisms of extensibility include abstraction, generaliza-
tion, and pattern-oriented design.

= Can you say where the code cannot be used? This is sometimes as important as
asking where the code can be applied. Another way to view this issue is to consider
the limitations of the component or class you have designed. Trying to design a
class for too many purposes is as inadvisable as designing it for too specialized a
purpose.

Taking a Class Approach

Chapter 4, “Software Design—Much Ado About Something,” and Chapter 6, “Object-
Oriented Fantasies and Realities,” discuss in detail some of the issues of object-oriented
design. This section touches on a few specifics regarding classes as vehicles for reusable code.

Programming a game with C++ often involves using an object-oriented approach to
application development. A game written in C++ that uses object-oriented development
strategies is likely to draw together functions into classes. The actions of the game take
place through interactions between the objects. In contrast, a game that is written in C
might employ a set of libraries that draw together functions and defined values. The
actions of the game take place through function calls involving the manipulation of the
data that is established to define different states of the game.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Taking a Class Approach

Arriving at a conclusive argument for using classes over function libraries is not as easy as
it might appear to be, but in the end, the general practice is to design a game as a set of
classes. Generally, the software industry has gravitated toward object-oriented programs
because such programs contain and control complexity better than do structured pro-
grams and function libraries. A class gathers into one place the data that describe the state
of the object and the operations (or functions) that control the behavior of the data.
Further, classes allow a programmer to modularize the development of the game, so that
a change to one part of a game does not impact many other parts of the game.

Using Standard Class Forms

Programmers can more readily use code when they do not have to spend a great deal of
time figuring out how to use it. This notion applies to the collection of operations that
form the interface of a class or set of classes. If the interfaces for the classes in a library do
not conform to a standard model that implicitly identifies the services provided, the user
must study the interface of each class in isolation to determine what services it provides.
If the difference from class to class proves extensive, the user might not be able to trust
even the most generalized notions about class design. Frustration results.

Consistency

Consistency in class construction begins with the way that a class designer designs a class
interface. Chapter 6 deals with this topic in more specific detail, but it is important to
mention here that applying similar names to similar operations is a good idea. As an
example, consider the meaning of the following operations:

//mutator. ..

void SetPos(const POINT& vecPos);

//accessor...
POINT GetPos()const;

You can determine fairly easily the meaning of these operations. If you call the GetPos()
operation, the operation returns a reference to a POINT. In other words, if you want to
know the values of the current coordinate, you can obtain them from the returned vector.
On the other hand, if you call the SetPos() operation, you can set the values of the current
position by passing a reference to a POINT object. The balance of “set” and “get” allows the
operation users to understand easily how the operation works. Likewise, the use of a sin-
gle data type makes using the operation symmetrical and easy.

In contrast, consider the inconvenience that might be occasioned with the following
variation:

//mutator. ..

void SetPos(POINT vecPos);

//accessor...
int GetPos()const;

TEAM LING - LIVe, Informative, Non-cost and cenuine !

173

174

Chapter 5 = Old Is Good—The Library Approach

In this case, you still see two operations, but the second operation, the accessor, suddenly
becomes a mystery. You have no way to understand what the single integer value means in
relation to the two operations. It might be that some type of look-up strategy is implied,
but whatever this is cannot be known without investigations.

Consistency in class design implies using standard approaches to things like accessing and
mutating (changing) class data. “Getting” or “setting” the state of the class implies getting
or setting the state of the class according to easy-to-understand patterns of use.

Nice Versus Practical Classes

Although you should seek to limit classes so that they provide the services you need, you
still can establish what is generally referred to as a “nice” class. Such a class is akin to a
standard approach to creating classes. Keep in mind that a nice class is developed in a spe-
cific setting and conveys a sense of formalism. It provides a set of services that a given
development team might establish as standard. The following list itemizes some possible
services:

= Copy construction

Object destruction

= Assignment

Boolean operations

Accessor and mutator operations

= Inequality operations

A class that provides such services possesses a standard interface. Note that, among other
features, a standard interface provides an explicit constructor. Likewise, it provides opera-
tors that are overridden for assignment and comparison activities. And it offers a destruc-
tor. As shown in the earlier examination of the accessor and mutator operations, classes
that are designed using a standard interface promote understanding and ease of use.

Having defended the notion that standard interfaces facilitate understanding and use, you
can also defend the opposite. Situations arise in which it is inadvisable to implement a
standard interface. In the following code sample, the definition of the interface has been
limited because it makes little sense to fully implement the services that a nice class should
provide. Instead, the interface is defined according to practical considerations. In the
CEntity class, one such consideration is whether the user of the class will ever require an
accessor or a copy constructor. Such uses are unlikely, so an option is to declare the copy
constructor as private.

f#ifndef _CENTITY_HEADER_INCLUDED

fidefine _CENTITY_HEADER_INCLUDED

#include "game.h"
class CEntity

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Taking a Class Approach

public:
// constructor
CEntity(CStdString strName);
/1 destructor.
virtual ~CEntity();
// Draws the entity
virtual void Draw();
/] Get and Set methods //////111111111111171111710011111111111
virtual void SetMesh(CMesh *pMesh)
{m_pMesh = pMesh;}
virtual void SetPos(D3DXVECTOR3 vecPos)
{m_vecPos=vecPos;BuildWorldMatrix();}
virtual void SetRot(D3DXVECTOR3 vecRot)
{m_vecRot=vecRot;BuildWorldMatrix();}
virtual void SetScale(D3DXVECTOR3 vecScale)
{m_vecScale = vecScale;BuildWorldMatrix();}
[T i i i i riieiirlr
protected:
CStdString m_strName;
// Pointer to the mesh for this entity
class CMesh *m_pMesh;
// The position, rotation, and scaling vectors
D3DXVECTOR3 m_vecPos,m_vecRot,m_vecScale;
// A matrix in which to store all our info so we don't have to
// generate it every time
D3DXMATRIX m_matWorld;
// Builds the world matrix according to the 3 vectors (pos,rot,scale)
virtual void BuildWorldMatrix();
b
flendif _CENTITY_HEADER_INCLUDED
Before you implement a standard interface for a class, consider whether you anticipate
that you will use the class in unanticipated ways. If you were to create a generic CEntity
class for a game engine that you anticipated distributing widely, for example, providing a

fully implemented standard interface might be mandated. But in the context of use devel-
oped here, the time investment that the standard interface requires lacks justification.

Class Implementation
In the declaration of CEntity shown earlier, inline versions of mutator operations were cre-
ated. Here, for example, is the inline version of SetMesh():
virtual void SetMesh(CMesh *pMesh)
{m_pMesh = pMesh;}

When you both declare and define an operation in the declaration of a class, your activi-
ties implicitly inline the operation. When you inline an operation, you request the com-
piler to create the object code for the operation every time the operation is called. The

TEAM LING - LIVe, Informative, Non-cost and cenuine !

175

176

Chapter 5 = Old Is Good—The Library Approach

alternative is for the compiler to create the object code for the operation once and store a
lookup to this code in a table. The compiler can create the object code only once and then
reference this code when it encounters subsequent calls to the operation. In this way, the
compiler reduces the amount of object code that a program requires.

Compiler manufacturers often optimize inlining, so the compiler decides for itself
whether to create object code inline. In some instances, you can still force inlining.
Specifically, unless your compiler manufacturer has stipulated otherwise, using the key-
word inline can force inline generation of object code.

With or without optimized compilers, however, a couple of reuse points arise. It makes lit-
tle sense to write an enormously large operation inline. If you write large operation defi-
nitions in the declaration of a class, users of your code might find it difficult to discover
what constitutes the class interface. To discover the basic services that the interface pro-
vides, the code user must pick through possibly hundreds of lines of implementation
code. Such picking can be exhausting and irritating.

Why, then, is it good to implement some operations inline in the CEntity class? The answer is
that if an operation involves only a return statement, it might make much more sense than
otherwise to maintain the operation in one place in the program. Ease of maintenance justi-
fies inlining. On the other hand, in most cases you will want to declare and implement your
operations separately. This chapter provides separate declaration and implementation of the
constructor and two other operations in the CEntity class. The implementations of these
operations are in separate files, apart from their declarations.

note

You can inline code without cluttering your class declaration if you place inline operations in the
header file after the class declaration. When you do this, mark the inlined operations in the decla-
ration with an inline comment, //in11ine. This way, you still achieve the speed that an inline oper-
ation offers, but the interface is much easier to read. Here is an example of what this looks like for
SetMesh():

}3//This is the end of the class declaration
inline void CEntity::SetMesh(CMesh *pMesh)
{m_pMesh = pMesh;}

Advice is courtesy of John Hollis.

One other point arises. Keep in mind that unless your complier possesses optimizing
capabilities, which most modern compilers do, inlining can possibly result in an enor-
mous amount of object code even if the operation declared inline possesses only a few
lines of code. Consider the BuildWorldMatrix() operation in the code sample that follows.
This operation consists of only a few lines of code, but each line calls another operation.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Taking a Class Approach

If operations call other operations on an inline basis, a potentially vast amount of object
code might result, for each called operation might be generated inline. For this reason,
when one operation calls other operations, it should not be defined inline.

finclude "../game.h"
NNy,
// CEntity::CEntity()
// Creates an entity object
NNy,
CEntity::CEntity(CStdString strName)
{
// Set up some default parameters
m_vecPos = D3DXVECTOR3(0,0,0);
m_vecRot = D3DXVECTOR3(0,0,0);
m_vecScale = D3DXVECTOR3(1,1,1);
m_pMesh = NULL;
m_strName = strName;
// Build the default world matrix
BuildWorldMatrix();
}
LILHTTILLLEII L L r i i i riiiiiiiniieillil
// CEntity::~CEntity()
//Destroys an entity object
NNy Ny,
CEntity::~CEntity(){}
NNy,
// CEntity::BuildWorldMatrix()
// Builds the world matrix to be used during drawing
NNy,
void CEntity::BuildWorldMatrix()
{
D3DXMATRIX matPos,matRot,matScale;
D3DXMatrixTranslation(&matPos,m_vecPos.x,m_vecPos.y,m_vecPos.z);
D3DXMatrixRotationY(&matRot,m_vecRot.y);
D3DXMatrixScaling(&matScale,m_vecScale.x,m_vecScale.y,m_vecScale.z);
D3DXMatrixMultiply(&m_matWorld,&matScale,&matRot);
D3DXMatrixMultiply(&m_matWorld,&m_matWorld,&matPos);
}
NNy,
/1 CEntity::Draw()
// Draws the object
NNy,
void CEntity::Draw()
{
// Set up the world matrix
Graphics->GetDevice()->SetTransform(D3DTS_WORLD, &m_matWorld);
// Draw the actual mesh
m_pMesh->Draw();

TEAM LING - LIVe, Informative, Non-cost and cenuine !

177

178

Chapter 5 = Old Is Good—The Library Approach

Making Code Efficient

The efficiency of your code depends in most cases on how many redundancies it contains.
A redundancy is anything that is performed more than once. When you write code effi-
ciently, you reduce the number of redundancies.

Redundant code occurs on many occasions. One occasion occurs when you declare
instances of objects in settings in which such declaration is not needed. Another occasion
of needless redundancy is when you allow your program to create multiple copies of an
object. The passages that follow examine these two situations.

Needless Declaration

Needless declaration occurs in many contexts. One of the more frequent problems arises
when you develop an algorithm through trial and error and along the way create many
instances of different types of data but do not in the end clean things up so that the redun-
dancies are eliminated. Consider the following bit of code:

int CStateMachine::GetIndex(CStdString strName)
{
CStdString tempstrName = strName;
bool flag = false;
int index = 0;
// Find the state
for(int i=0;1<NUM_STATES;i++)
{
if(m_pStates[i]->GetName() == tempstrName)
{

flag = true;
index = 1;
}
}
if(flag)
{
return index;

else
{
// utter failure
return(-1);
{
}

In this situation, an object of the CStdString type was declared and assigned to a local
string for testing purposes. Then a flag was declared to register whether the CStdString
value was found within an array. In an attempt to observe structured programming prin-
ciples (one point of entrance, one point of exit), a flag was declared and an integer data
type was used to store the results of the operation. Likewise, a for loop was used to iterate
through the array.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Making Code Efficient

The previous sample creates a number of redundant declarations. Consider, likewise, the
number of selection statements. The CStdString instance, the flag, and the integer for stor-
ing the index value are all in part justified, but at the same time, if the code can be made
more efficient, you need to consider whether such declarations are justified. Generally,
they are not. Nothing is gained, for example, by replicating the CStdString instance.
Likewise, the selection statements are questionable. Rather than iterating through the
whole array, you can simply return the index as soon as you find it. And even if you vio-
late strict structural programming principles by doing so, you can exit the loop with a
return value.

Consider another version of the operation:

int CStateMachine::GetIndex(CStdString strName)
{

// Find the state

for(int i=0;1<NUM_STATES;i++)

{

if(m_pStates[i]->GetName() == strName)
return(i);

}

// utter failure

return(-1);
}

This version of the operation eliminates much of the redundancy. It still poses a few prob-
lems with copying (covered next), but the form it assumes here possesses much greater
simplicity and is more efficient.

Needless Copying

Returning to the code in the CEntity, consider the declarations of the operations in the
class as presented earlier:

D3DXVECTOR3 GetPos(){return m_vecPos;}

D3DXVECTOR3 GetLookAt(){return m_vecLookAt;}

D3DXVECTOR3 GetUp(){return m_vecUp;}

void SetPos(D3DXVECTOR3 vecPos){m_vecPos = vecPos;}

void SetLookAt(D3DXVECTOR3 vecLookAt){m_vecLookAt = veclookAt;}
void SetUp(D3DXVECTOR3 vecUp){m_vecUp = vecUp;}

These declarations are all sound enough as given. The accessor functions return instances
of the items requested, and the mutators change values as requested. Redundancy plagues
the activity, however. For starters, consider how the arguments are passed to the mutators
(SetPos(), SetLookAt (), and SetUp on a copy basis. Copying objects can require an enormous
expenditure of effort on the part of the operating system, and the result is a decline in the
performance of the program.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

179

180

Chapter 5 = Old Is Good—The Library Approach

You can solve the problem fairly easily by using references. When you designate the para-
meters as references, no copying takes place. To round out your modifications, you can
assign const to the parameters. This key word protects the object from change. In this case,
when you prevent the D3DXVECTOR3 from being copied, you restrict what could be a fairly
significant drain on resources.

void SetPos(const D3DXVECTOR3 &vecPos){m_vecPos = vecPos;}

void SetLookAt(const D3DXVECTOR3 &veclLookAt){m_veclLookAt = veclookAt;}
void SetUp(const D3DXVECTOR3 &vecUp){m_vecUp = vecUp;}

When you pass large objects to operations, you can increase the amount of memory usage
if you do not attend to the dangers of unintended copying. There are several points at
which passing arguments to an operation can invoke copying:

= If you pass an object to a function and do not use a reference or a pointer, the
object might be copied.

= If you declare a local instance of the object for purposes of assigning the values of
attributes for temporary purposes, the object can be constructed redundantly dur-
ing the assignment operation.

= If you return the results of the operation as something other than as a reference or
a pointer, again, you can invoke a constructor.

= If you pass the results of the operation to a new instance of the object, you can
again invoke the constructor.

Generally, the fewer the copy operations, the better. Using references provides perhaps the
easiest approach to eliminating needless copying. Using pointers is also an option.

Reference Counting

In C++, one of the biggest problems that developers face is a memory leak. Memory leaks
often occur when a program loses track of how many objects of a given type it has creat-
ed. Reference counting provides a simple mechanism for making objects easier to track.
Although it is not suggested that everyone should use this approach to eliminating the
problem, this section does describe the approach and show you how to implement it.

To create a class that can track the number of instances in which it has been instantiated,
you can create a constructor that counts each time it is called. For Ankh, a situation that
merited reference counting arose with image files. It was necessary to ensure that multi-
ple copies of the same image files were not loaded into memory. Video memory is a scarce
resource that should be conserved whenever possible.

To implement the reference-counting code, the CImage and CImageMgr classes were changed.
Following are the steps that were used:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Making Code Efficient

An integer variable, m_iRefCount, was added to the CImage class. This variable tracked
the number of objects currently using the image.

The operations AddReference() and RemoveReference() were added to the CImage class
to change the reference count from the image manager as objects requested access
to the image.

When the image manager’s Get() operation was called, the reference count was
increased. Another function, DoneWithImage(), allowed an object to inform the
image manager that it was done using an image and could decrease its reference
count.

If an image’s reference count dropped to zero, the CImage object was destroyed and
the memory was freed.

Here is the code for CImageMgr: :DonelithImage():

void CImageMgr::DoneWithImage(CStdString strName)

{

}

CImage *imgFound = NULL;
for(unsigned int i=0;i<m_vecImages.size();i++)
{
// Look for the image with the matching name
if(m_vecImages[i]->GetName() == strName)
{
imgFound = m_vecImages[il;
break;

}

// The image couldn't be found...
if(!limgFound)

{
Log->Add("CImageMgr: :DoneWithImage()
Tried to unload %s, and it does not exist...",
strName.c_str());
return;
}

// Remove a reference to the image (it will unload
// itself if it needs to)
imgFound->RemoveReference();

When the CImageMgr object is destroyed, it loops through the remaining images and
unloads them. Because all objects are supposed to destroy themselves before the man-
agers, there should be no images left to destroy at this point. If any are found, they are
added to the log file. The data in the log file can determine where the leak has occurred.
The code is as follows:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

181

182 Chapter 5 = Old Is Good—The Library Approach

void CImage::Unload()
{
// Only unload if we are currently Tloaded
if(m_bLoaded)
{
// Release the texture
if(m_pTexture) m_pTexture->Release();
m_pTexture = NULL;
// Add a warning if someone is still holding on to us
if(m_iRefCount>0)
{
Log->
Add("CImage::Unload()> %s unloaded with\
iRefCount=%d (There are objects still\
holding onto this image!)",
m_strName.c_str(), m_iRefCount);
}
// Reset reference count back to 0, set unloaded
m_iRefCount = 0;
m_bloaded = false;

}

Keep in mind that you can use different approaches to initiating counts. One approach is
when you construct an object. Another approach is to invoke the AddReference() operation.
Also, note that copies will point to the same count set, so the reference count increases
with copying. Likewise, note that the RemoveReference() operation deletes the primary
object when the count reaches zero.

Exceptions and Errors

An error is a problem in the program that a tester can detect or create through testing. The
most obvious type of error is a syntax error. The compiler catches syntax errors. Omit a
semicolon or a brace, for example, and the compiler is likely to object. On the other hand,
errors can also occur in the logic of the program. If you find that the program distorts your
mesh, for example, you must go back through the code to find the point at which the pro-
gram logic fails and the mesh becomes distorted. Such an error is usually referred to as an
internal error. Testing can eliminate most such errors. If the code is shipped with glaring
errors, it usually means that the product has not been tested and debugged sufficiently.

Another type of error is an external error. You can view such an error as an exception
caused by circumstances that are external to the code. Consider a situation in which your
game runs on a computer that resides on a yacht. The owner of the yacht sails out to sea,
into a storm. Seeking refuge from the storm, the owner of the yacht battens down the
hatches and huddles below decks, where he starts playing your game to pass the time until
the weather clears. But then lightning strikes the mast, and electrical static is generated.
Your game crashes. This is an external error or an exception.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Exceptions and Errors

Why did the exception occur? Strange things can happen with static electrical fields. The
static electricity from the storm might have affected the CPU in such a way that an inte-
ger was turned into a float or vice versa. The program crashed as a result. It might be that
no program could resist the electrical static that the storm generated, but a program can
possess a way to handle exceptions. A program that handles all exceptions without crash-
ing is said to be exception free.

Handling an exception involves either correcting the exception or shutting down grace-
fully. In some instances, shutting down is the best alternative. With most Windows office
applications, shutting down is a reasonable option, especially if the state of your docu-
ment can be saved before the application closes. With a heart monitor in a hospital, in
contrast, shutting down is not an option. If the software detects an exception, it should
have the ability to recover. If it cannot recover, it should generate an alarm.

To respond to an exception, a program must have a mechanism that can detect the excep-
tion and then either retry or terminate the execution of the program in response to the
exception. This is the basis of try and catch blocks.

Try and Catch

Try blocks offer a place in which you can station code that might generate exceptions. Try
blocks replace an older technique for handling exceptions. This approach involved putting
code in repeated selection blocks. Each selection block could write an error message upon
failure. Although in many ways this older approach was reliable, the code tended to clut-
ter up a program. The reduction of such clutter was one of the reasons that try and catch
blocks were added to C++.

C++ provides a try-catch mechanism for exception handling. This mechanism includes
three primary features, as follows:

® A try part, which encloses the code you want to monitor.

® A throw part, which enables you to deliver information about an exception when it
occurs.

® A catch part, which catches the information you have thrown from the try part.

C++ offers a number of approaches to using the try-catch mechanism. One of the most
straightforward is to first create a class that you can use to identify exceptions. You can
then use the constructor from this class with a throw statement. You can throw an anony-
mous instance of the class. The catch block can then catch the anonymous instance of the
exception class. The catch block catches the exception because you place a parameter in
the argument list of the catch block that is of the exception type. When the catch block
catches the exception, code in the catch block can identify the exception and respond to it
appropriately.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

183

184

Chapter 5 = Old Is Good—The Library Approach

Declaring Exception Classes

To illustrate how to write code that can handle exceptions, this section begins by creating
a fairly lightweight hierarchy of classes that handle exceptions. To create this hierarchy,
consider that exceptions fall into two general categories. Some are fatal, whereas others are
not. A fatal error requires you to gracefully close things down. A nonfatal error leaves two
options: gracefully closing things down, or logging the error, issuing a warning, and going
on with the game.

In Ankh, an abstract exception class was created from which to derive classes that addressed
the two main types of exceptions. The abstract class, CException, established the basic model
for all exceptions that the game might throw and provided a general data type that could
be used in all catch blocks. Every catch block could catch objects derived from CException.
The member operations included a default constructor, a constructor in which to embed a
message about the exception, and operations that could record and obtain data about the
exception. Each exception could be identified with a number and a message associated with
the exception. The code is as follows:

class CException{

protected:
/] Description of the exception
CStdString m_strDesc;
/] The file in which the exception occurred
CStdString m_strFile;
// Which Tine number
int m_iline;

public:
// Default constructor
CException(){}
/1 Creates an exception
CException(CStdString strDesc,CStdString strFile,int iline);
CStdString GetDesc() const {return m_strDesc;}
CStdString GetFile() const {return m_strFile;}
int GetLine() const {return m_ilLine;}

/] Returns the full description of the exception

CStdString GetFullDesc() const;
1

Defining Exception Classes

note

The STL offers a class called exception that provides an excellent approach to handling errors. This class
provides an operation, what (), that you can use to report the error being thrown. A set of four runtime and
three logic error classes are derived from std::exception. Several basic exceptions can be processed:
bad_alloc, Tength_error, out_of_range, runtime_error, bad_cast, and overflow_error. See the
reference to Cameron Hughes and Tracey Hughes at the end of this chapter for more information.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Exceptions and Errors

Given the creation of the abstract base class for exceptions, the team then proceeded to cre-
ate two derived classes. The two derived classes address the two types of exception handling
routines developed for the game. One logs the exception and goes on. The other logs the
exception and closes the game. When the program logs an exception, the result is what
the team labeled a warning exception. When an exception results in the close of the game,
the exception becomes a fatal exception. The code for the exceptions reads as follows:

/] Used for fatal exceptions. When a fatal exception is thrown,
// we must terminate the game.
class CFatalException : public CException{
public:
// Creates an exception
CFatalException(CStdString strDesc,CStdString strFile,int iline);
}s

// Used for warnings
class CWarning : public CException{

CWarning(CStdString strDesc,CStdString strFile,int iline);
b

-————-Implementation-————————-
LTI LT rirriirrlrg

// CException::CException /]
// Creates an exception /1l

LHEELEETEEETT LT i]
CException::CException(CStdString strDesc,CStdString strFile,int iline)
{

// Store the description of the exception

m_strDesc = strDesc;

// Get the relative path to the file (this is so that if the user
// has the source code installed, we can drop the source straight
// into the Exception message box to help debug)
int idxAnkhSource = strfile.find("ankhsource\\src\\");
m_strFile = strFile.Right(strFile.length() -
idxAnkhSource - strlen("AnkhSource\\src\\"));
m_strFile.Format(". . \\%s",m_strFile.c_str());
m_strFile = FullPath(m_strFile);
// Store the line number
m_iLine = iline;
}
NNy Ny,

/1 CException::GetFullDesc //
/] Returns a full description (with source code) of //
/] the exception that was thrown //

NNy vy,
CStdString CException::GetFullDesc()
{

TEAM LING - LIVe, Informative, Non-cost and cenuine !

185

186 Chapter 5 = Old Is Good—The Library Approach

CStdString strFullDesc;

/1 If we can, read in the source file where the exception occurred
/1 and put this information in the description as well

char buf[2567;

CStdString strSource;

std::ifstream fsSource(m_strFile);

// We found the source file! Grab the source code from around

/] the Tine where we threw the exception and add it to the

/] description

if(fsSource.is_open())

{
for(int iline = 0;iline<m_iLine;iline++)
{
fsSource.getline(buf,256);
if(iLine>=m_iLine-8)
strSource.Format("%s\n%s",strSource.c_str(),buf);
}

}

strFulTDesc.Format("%s\n(%s:%d)\n\nSource:\n%s",
m_strDesc.c_str(),m_strfFile.c_str(),m_iLine,strSource.c_str());

return(strfullDesc);

}

T LT T

// CFatalException::CFatalException /1
/] Creates a fatal exception (thrown when the game //
// must be terminated /1

Ny,
CFatalException::CFatalException(CStdString strDesc,

{

CStdString strFile,int iline)

/] Store the description of the exception
m_strDesc = strDesc;
// Get the relative path to the file (this is so that if the user
// has the source code installed, we can drop the source straight
/] into the Exception message box to help debug)
int idxAnkhSource = strFile.find("ankhsource\\src\\");
m_strFile = strFile.Right(strfFile.length() -

idxAnkhSource - strlen("AnkhSource\\src\\"));
m_strFile.Format("..\\src\\%s",m_strFile.c_str());
m_strFile = FullPath(m_strFile);

// Store the line number

m_iLine = iline;

// Add the information to the log

Log->Add("FATAL EXCEPTION: %s",GetFullDesc().c_str());

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Exceptions and Errors

Throwing Exceptions

Given the implementation of concrete exception classes, it is possible to equip the pro-
gram to throw clearly identified exception objects at any location where it is reasonable to
insert a try block. One such location is in the WinMain() operation. To accomplish this, the
programmer surrounds the game code with a try block and catches the possible excep-
tions. The result is that either the code exits the game or the activity is logged.

When the try block throws a fatal exception, due to the forms of overloaded constructors
that have been created, it is possible to furnish a description of the exception as an argu-
ment to the constructor. It is also possible to identify the source file in which the error
occurred and the line number of the code that was executed last. The exception class auto-
matically checks for the existence of this source file and, if it finds it, adds the block of
code directly into the description of the exception. This description appears in a dialog
box that displays when the program throws the exception. Although this feature is prob-
ably not something you want to ship with a game, it proves useful for debugging. The
try and catch blocks for the exception handling routine in the WinMain() operation are as
follows:

int APIENTRY WinMain(..)
{
// Our CGame object
CGame *pGame;
try{
// Set up our global instance pointer
g_hInstance = hlnstance;
// Initialize the game object, and have it run
pGame = new CGame();
pGame->Run();
// Now simply delete the game object. We're done
delete(pGame);
Jcatch(CFatalException exFatal){
// Shut down the game by deleting the game object
delete(pGame);
// Show a message box with information about the exception
MessageBox(NULL,exFatal.GetFullDesc(),
"FATAL ERROR",MB_0K);
return 0;
Jcatch (CWarning exWarning){
// Just Tog the warning
Log->Add("WARNING: %s",exWarning.GetFullDesc().c_str());
}
}

To throw a fatal exception, you can create a helper operation. Used in the CImage class, the
program throws a FatalExcepion object if it fails to find an image file. The code is as follows:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

187

188

Chapter 5 = Old Is Good—The Library Approach

bool CImage::LoadFromFile(CStdString strFname)

{
// The image info structure holds width, height, formats, and so on
D3DXIMAGE_INFO info;

// Try to load the texture
if(FAILED(D3DXCreateTextureFromFileEx(..)
{
throw FatalException(__FILE__, LINE__,
"CImage::LoadFromFile ->
Failed to load %s!",strFname.c_str());
return(false);

Compatibility and Maintainability

When a body of code is compatible with another body of code, its potential for reuse
increases. Compatibility has to do with how well operations, classes, or modules interact.
If you add a module to a program and find that the addition of the module requires that
you change either your original code or the code in the added module, the two sets of code
are not readily compatible. Compatibility means that the two bodies of code can be used
together without rework.

Along other lines, maintainability bears heavily on reuse. When a body of code is readily
maintainable, it can be changed with relative ease. One effective way to reduce the work
involved in changing code is to reduce the number of times you have to make the same
change. You usually have to repeatedly make the same change if the code contains many
passages that have been cut and pasted from some previous body of code. Remember that
if you copy a defective piece of code to several places in your program, to correct the
defect, you must visit each place where you have copied the code.

Reducing Redundancy

You improve the maintainability of your code if you decrease the number of times a main-
tenance programmer must change parts of the code to make a single change in one area
of logic that the code offers. If you develop code through frequent copy-and-paste oper-
ations, you might find, in the end, that maintenance of your code becomes difficult. To
solve this problem, you can take precautions to properly modify code as you copy and
paste it or to reduce the number of times you copy and paste.

As an example of how copy-and-paste practices lead to problems, consider the duties you
contract when you copy and paste. Usually, you copy the code in one block. The change
usually involves altering the names of local variables to correspond to the new context of
use. After the code is in place, if you find a way to improve the original block, you also

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Compatibility and Maintainability

need to change the code in the copied block. Likewise, you face a similar obligation if you
spot an error in the original block. Add to this another problem. Each time you change
the context of a block of code, you face the need to change the documentation.

Clearly, such repeated tasks reduce ease of maintenance and increase chances that errors
will occur. Among the chief problems are that the documentation and variable names
remain unchanged and that an improvement to one block might not be made to another,
resulting in code that lacks symmetry.

Eliminating duplicate blocks of code begins with not creating them in the first place.
Short of this, however, when duplicated blocks do exist, you still have the option of find-
ing such blocks and merging them. To accomplish this, you can first isolate the duplicat-
ed functionality in a distinct operation. You can then call this operation in place of the
duplicated blocks. To illustrate this situation, consider an early stage of the first stripe of
Ankh. In the early stripe, a programmer created two sliders: horizontal and vertical. The
approach used to create the sliders was to copy and paste a block of old code into two dis-
tinct functions. A situation of dual maintenance responsibilities resulted. The following
bit of code illustrates the situation:

// CSlider update method. This is for a horizontal slider..

void CSlider::Update()

{
int iMouseX=Input->GetMouseX();

// Call parent update
CGuilObject::Update();
//Change the Slider's Tlocation to the mouseX if pressed
if (m_bPressed)
{
if (((iMouseX + (m_sprSlider->GetWidth() / 2))
<= m_iRight) && ((iMouseX -
(m_sprSTider->GetWidth() / 2)) >= m_iLeft))
m_iS1iderPos = iMouseX;

}

As you can see, the CS1ider::Update() operation takes care of vertical motions. Creation of
this code involved solving only one problem: vertical sliding. After solving the first prob-
lem, it’s necessary to turn to the second problem: implementing a horizontal slider. At
start is to copy and paste code to create an Update() operation for another object that pro-
vides horizontal motion. Most of the code is identical.

void CScrollBar::Update()

{

int iMouseY=Input->GetMouseY();
// Call parent update

TEAM LING - LIVe, Informative, Non-cost and cenuine !

189

190 Chapter 5 = Old Is Good—The Library Approach

CGuiObject::Update();

//Change the Scrollbar Tocation to the mouseY if pressed

if (m_bPressed)

{
if (((iMouseY - (m_sprScroller->GetHeight() / 2))
>=m_iTop) && ((iMouseY +
(m_sprScroller->GetHeight() / 2)) <= m_iBottom))
m_iScrol1Pos = iMouseY;

}

The problem here is that much of the code is, indeed, the same. The question becomes
whether it is worthwhile to have one slider object for both horizontal and vertical motions
and to needlessly proliferate objects (CSTider, CScrollbar). To overcome this problem, you
can merge the different blocks into a single CS1ider class and implement a single operation:

void CS1ider::Update()

{
/] Get mouse x and y
int iMouseX=Input->GetMouseX();
int iMouseY=Input->GetMouseY();
/] Call parent update
CGuiObject::Update();
// Make sure we're in bounds
if(m_iStyle == HORIZONTAL)
{
if(m_iSliderPos > m_iRight - m_sprSlider->GetWidth()/2)
m_iSliderPos = m_iRight - m_sprSTider->GetWidth()/2;
if(m_iSTiderPos < m_ileft + m_sprSlider->GetWidth()/2)
m_iSTiderPos = m_iRight - m_sprSlider->GetWidth()/2;

}
else if(m_iStyle == VERTICAL)
{
if(m_iS1iderPos > m_iBottom - m_sprSlider->GetHeight()/2)
m_iSTiderPos = m_iTop + m_sprSlider->GetHeight()/2;
if(m_iSTiderPos < m_iTop + m_sprSlider->GetHeight()/2)
m_iSTiderPos = m_iTop + m_sprSlider->GetHeight()/2;
}
//Change the Slider location to the mouseX if pressed
if (m_bPressed)
{
if (((iMouseX + (m_sprSlider->GetWidth() / 2))
<= m_iRight) &&
((iMouseX - (m_sprSlider->GetWidth() / 2))
>=m_ileft) && m_iStyle == HORIZONTAL)
m_iSTiderPos = iMouseX;
else if(((iMouseY - (m_sprSlider->GetHeight() / 2))
>=m_iTop) &&

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Installation and Ease of Use

((iMouseY + (m_sprSlider->GetHeight() / 2))
<= m_iBottom) && m_iStyle == VERTICAL)
m_iS1iderPos = iMouseY;

}

This new block of code might appear more involved than the two original blocks code, but
the advantages in terms of maintenance are significant. The functionally now exists in one
location. Add to this that if you want to refactor the code, you can more readily do so with
code that you have placed in one location. (See Chapter 6 for a discussion of refactoring.)

The Danger of Early Optimization

If eliminating duplicated code blocks can decrease the number of times you have to make
a given change, refraining from early optimization can ease the difficulty of making a
change. Optimization involves, among other things, concentrating algorithms into brief,
often cryptic lines that are extremely difficult to decipher. Most programmers tend to
optimize after they work out the basic logic of an operation.

Optimization can cause problems, however. When you optimize a body of code, you
almost always make it more difficult to understand and change. Because code written
early in a project is likely to be changed as the project progresses, optimizing code early in
a project makes little sense. But it is also the case that even during later stages of develop-
ment, optimization might be a problem. That is because it is almost impossible to know
when a given body of code will require no more changes.

One remedy to premature optimization is to eschew it. Unless performance issues force
you to do so, it is best to strive first for ease of maintenance rather than optimization.

Using Shallow Hierarchies

Avoid deep class hierarchies. As is discussed in greater detail in Chapter 6, each level in a
hierarchy adds weight to the classes in the hierarchy. If a user of your library instantiates
a given object of a given class, the penalty should not be that the resulting program sud-
denly slows down in an unexpected way or absorbs an enormous store of memory. To
eliminate such problems, change aggregation to generalization. Poor design efforts can
easily allow frequently instantiated objects to be defined within deep hierarchies.

Installation and Ease of Use

You can create utility classes that facilitate operations in other classes. Such operations (or
classes) can be fairly lightweight and easy to port along with the classes they support. As
the team developed Ankh, it tended to park utility operations in a file called utils.cpp.
These utility operations were retained as global functions to make them easier to use.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

191

192

Chapter 5 = Old Is Good—The Library Approach

Using a namespace, such as Ankh, could help make them easier to integrate with other
utilities in the future by avoiding function name collisions. Among the operations in the
utility category are those that provide a means of locating resources. Usually, resources
reside in either the same directory as the executable or in specified directories. For exam-
ple, when you execute the program from the IDE and try to load data\something.png, the
compiler might seek a path relative to the project file instead of the executable and thus
cause an error. To remedy this situation, you can develop two utility functions:
GetAddPath() and FullFileName(). They provide the full path to the correct location. The
code is as follows:

LTI]

/1 GetAppPath() /1
// Returns the current path that the game is running in /1l
// Best used when Toading/creating files to make sure we are /]
// Tooking in the correct place /1l

LTI i i riiiiiirniinii
CStdString GetAppPath()
{

// Start out as nothing

static CStdString strPath = "";

/1 If it's our first time, do the actual name Tookup
if(strPath == "")
{
// Get the file name of our app
char buf[MAX_PATHI;
memset (buf,0,MAX_PATH);
GetModuleFileName(NULL,buf ,MAX_PATH);
// Starting from the Tlast character,
// move back until we find a "\'
for(int i=strlen(buf)-1;i>0;i-)
{
if(buf[i] == "\\") break;
}
// Insert a null char, and then put the result in strPath
buf[i+1] = "\0';
strPath.Format("%s",buf);
}
return(strPath);
}

Ny NNy,
// FullFileName(CStdString strFile) /]
/] Takes the relative path given in strFile, and appends on the //
// full path to the executable. This makes it safe to start the //
// app from any Tocation. (The game will still be able tofindits //
// data files.) /l
Ny YNy aay,

TEAM LING - LIVe, Informative, Non-cost and cenuine !

The Boost and STL Libraries

CStdString FullFileName(CStdString strFile)
{
CStdString strFullPath;
// Remove backslash at beginning if we need to
if(strFilef0] = "\\")
{
strFile = strFile.Right(strFile.length()-1);
}

// If the full path is already in there,
// return the original string
if(strFile.Find(GetAppPath())>0)
{
return(strfile);
}
// Otherwise, append the app path to the file name
strFullPath.Format("%s%s",GetAppPath().c_str(),strFile.c_str());
return(strFullPath);
}

You can craft operations that are similar to GetAddPath() and Ful1FileName() and place them
in a utility file or in a class that is designed as a repository for utility operations. The draw-
back of creating a class is that even if you want only one function, you must instantiate an
instance of the class, which means that you might invoke a heavy construction cost if the
class has a lot of baggage. On the other hand, using functions from a file library is not ter-
ribly elegant in object-oriented parlance. Static operations in a class are another alterna-
tive, because they are part of a class but don’t require an instance. Still, if the operation
library proves easier to use and renders a program that performs more efficiently, main-
taining a function library makes sense.

The Boost and STL Libraries

As mentioned earlier in this chapter, commercial and freeware libraries offer standard
data structures, algorithms, and other items useful in game development. Among those
available for C++ are the STL and Boost libraries.

Even with the availability of the STL and Boost libraries, developers still like to develop
code from scratch. If you want to craft your own container class, you are certainly free to
do so, but every day you invest in perfecting your container is a day you lose toward devel-
oping your game. Add to this that the product that results from your labor is more than
likely to be inferior to the product available through Boost or the STL. If dozens or even
hundreds of world-class programmers work on a given library for tens of thousands of
hours, what results is more than likely going to be more robust and efficient than what a
lone individual can complete during a few days of dedicated programming.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

193

194

Chapter 5 = Old Is Good—The Library Approach

The discussion goes on, even with respect to those who use the STL and Boost libraries.
Advanced programmers enhance the STL and Boost classes in a variety of ways, but except
for fairly infrequent occasions, it is unlikely that redeveloping STL or Boost capabilities
will render a better product. This is especially true if someone whose primary business is
developing a game, not optimizing string classes or data structures, undertakes the devel-
opment effort.

Using the STL

You can use the STL in several contexts. To focus on one of many uses, consider the CGuiMgr
class of the Ankh code, which uses an STL vector. The CGuiMgr class tracks all of the GUI
objects under its management. The number of objects that CGuiMgr manages tends to be
indeterminate and varying. At the same time, the class should be able to iterate through
the objects it manages fairly quickly and access them randomly. Given such requirements,
an STL vector was the best type of container for the job.

Implementing a vector from scratch always remains an option, but the STL makes such
implementation unnecessary. The vector type needs to be of the CGuiObject class. Creating
the constructor for CGuiObject involves only providing the data type to the template con-
structor. The code is as follows:

class CGuiMgr{

[el}

//0ur 1ist of GUI objects
std::vector<CGuiObject *> m_guilObjects;
}

To add a GUI object, you can simply call Register(), which registers the instance of
CGuiObject with the manager:

void CGuiMgr::Register(CGuiObject *guiObj)
{
/] Make sure we don't already have this one registered
if(GetIndex(guiObj->GetName())<0)
{
m_guiObjects.push_back(quiObj);

else
{
Log->Add("CGuiMgr: :Register() - >\
Tried to register %s but it was already \
registered!",guiObj->GetName().c_str());
}

}

To remove an instance of CGuilbject from the vector, you can use one of the operations
that the vector class provides. In this instance, the program uses the erase() operation. In

TEAM LING - LIVe, Informative, Non-cost and cenuine !

The Boost and STL Libraries

this code segment, a for loop that is predicated on an iterator controls the action. The iter-
ator is a special kind of pointer furnished by the STL library. It works in conjunction with
the begin() and end() operations of the vector class. Using the iterator, i, you can traverse
the vector. It is possible to dereference the iterator and in turn call the GetName() function
of the CGuiObject class. An alternative, not used here, is the find() function, which is imple-
mented in the STL as an operation in the vector class. The code is as follows:

// Removes the GuiObject from the GUI manager's control

void CGuiMgr::Unregister(CStdString strName)
{
std::vector<CGuiObject *>::iterator i;
// Find the object
for(i=m_guiObjects.begin();i<m_guiObjects.end();i++)
{
// We found a match; erase it from the vector
if((*i)->GetName() == strName)
{
m_guiObjects.erase(i,i);
return;

Using Boost

For game developers who are using C++, the Boost library offers capabilities that can be
considered to be a superset of the STL library. Among the classes that the library offers are
those that help with writing GUI code in a Win32 setting. As a part of the Ankh develop-
ment effort, the code included 0nClicked() and OnKeyPress() functions (among others) to
handle events. The effort that is required to implement handles from scratch is extensive.
Boost provides an elegant alternative.

As an example of how the Boost library provides a solution, consider the CImageButton
class. To implement a handler for this class, the program included a function pointer to
the CGuilbject class for the OnCl1icked, OnMouseDown, and OnMouseUp events. The Boost library
features a class called boost: : function, which allows you to add function pointers. To set up
a basic function pointer, you use boost:: functionX where X is the number of arguments to
be passed into the function. You then list the types of the arguments. As you list the types,
start with the return type. In the instances shown here, the return type is void:
boost::function0<void> OnClicked;

boost::function3<void,int,int,int> OnMouseDown;
boost::function3<void,int,int,int> OnMouseUp;

TEAM LING - LIVe, Informative, Non-cost and cenuine !

195

196

Chapter 5 = Old Is Good—The Library Approach

Following the definition of the function pointers for the OnClicked(), OnMouseDown(), and
OnMouseUp() operations, the program links the operations to those invoked when a given
event occurs. Consider, for example, an OK button. The OK button needs to be linked to
an OnClicked() operation. To link the button and the action that follows for its use, you can
use the boost::bind() operation. As the following code example shows, in the CMenuState
class, the boost::bind() operation links the OnC1icked() event that is associated with the Exit
button to the butExit_OnClicked() operation. You can call the boost::bind() operation at
any time, but it makes the most sense to do so when the button is created.

void CMenuState::OnEnter()
{

}}'Set up some event handlers
buttons[EXITI->OnClicked =
boost::bind(&CMenuState::butExit_OnClicked,this);

}

The STL allows you to create function pointers, and the operations in the Boost libraries
in some ways anticipate them. The difference is that although the Ankh team did not
abandon the STL, it found a library that both complements and extends it.

Documentation and Deployment

Documenting your code is an essential aspect of reuse. It is impossible in the space avail-
able in this chapter to treat this topic comprehensively, but a few points of value might
be presented. (See the texts listed at the end of this chapter for a more comprehensive
treatment.)

Watch for Cut-and-Paste Code

A frequent problem with comments is that they are pasted into a program along with a
reused segment of code without being updated to reflect the new context in which the
code is used. The frequency of such occurrences is fairly amazing. It is often easy to ignore
the comments while working through the changes to the code.

A solution to the problem is to eliminate as many of the starting comments as possible so
that you force yourself to write new comments. If you use this approach and do not write
new comments, you at least spare the user of your code the problem of trying to under-
stand the code by reading comments that discuss a context that is not applicable to the
current use of the code.

Do Not Address Obvious Things

When you address implementation, explain operations or algorithms that are not obvi-
ous. Granted, after working for hours to solve a problem, it is sometimes tempting to write

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Documentation and Deployment

a testimonial to the effort, but the fact remains that the user of the operation might have
little use for such information. Generally, you should address what the function returns.
In other cases, as mentioned earlier, you should address aspects of the operation that rep-
resent complex algorithms. Consider the following operation:

//Wraps the STL map find function and returns

//a string version of the key,

//regardless of the value stored
bool GetKey(string keyName);

Implementation details clutter up the documentation provided with the operation. In the
end, the user receives little information about how to use the operation. This should be
rewritten, perhaps along the following lines:

//Returns true if the provided string is found
bool GetKey(string keyName);

State the Common Use First

When documenting an operation that might be used in a number of contexts, program-
mers tend to gravitate toward creative uses. As interesting as such interpretations of the
function might be, the best approach is to document the most common, straightforward
activity. Consider the following bit of documentation:

//1f used in conjunction with the ResetWorld() function,

//can facilitate the update operations
MAP& SetMap(int mapID);

The problem with the above is that the reader really doesn’t learn anything about what the
SetMap() operation does. An alternative is to provide simple terms of use:
//Returns current map according to ID

//CLayer::GetID() returns the current map ID
MAP& SetMap(int mapID);

Show How to Do Things

When you write documentation, avoid providing comments on how not to do things.
Consider what it would be like if a swimming coach first taught swimmers how not to
swim. Negative admonition usually results after a newly implemented function burns an
unwary programmer. Consider the following:

//Don't use MAP objects that you have not tested for existence!
MAP& AddMap(const MAP& A, const MAP& B);

The comment is worthy of considering, no doubt; however, the reader has no idea, except
from inference, what the operation does when it is used correctly. This is what the reader
needs to know. An alternative might be along the following lines:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

197

198

Chapter 5 = Old Is Good—The Library Approach

//Returns new instance of map that combines
//common coordinates from the two MAP parameters
MAP AddMap(const MAP& A, const MAP& B);

Avoid Preaching

If you find that you have written as many lines of documentation as you have of code just
to guide yourself through the intricacies of the operation, you probably need to rethink
things. You should probably consider whether you are adding anything helpful to your
program. Generally, anything beyond a brief explanation of use probably belongs in an
accompanying user’s manual. Consider the following epistle:

//When you use this operation, you can cut down

//on how Tong it takes you

//to get up and running. You know it is bad to put

//fixed paths into a program. This

//function makes it unnecessary to do so.

//But the thing is that you must use it!
bool CImage::LoadFromFile(CStdString strFname)

Although such comments sometimes make for interesting reading, they seldom con-
tribute to the ability of the user to use the code in an expedient way. When programming
Ankh, the team determined that for each 100 lines of code, 30 sufficed for comments.

Some experts contend that many, many more lines are needed, up to several for each line
of code.

Self-Documenting Code

Here the object of discussion is the documentation you write as a programmer. This is in
contrast to the automated documentation approaches that are available with C++, Java,
and C#. (You can generate HTML documentation with C++ by using the utility class pro-
vided with the Microsoft IDE.) With Java and C#, you can generate XML or HTML com-
ments into convenient user-oriented documents.

In contrast, you can manually create self-documenting code if you attend to how you
name operations and parameters. Generally, consider the following practices:

m Operation names should consist of at least two words.

m The first word should be a verb.

m The second word should be the object of the verb.

m The two words should be combined by capitalizing the second word. Whether you
capitalize the first word is up to you.

A second concern is how you name the parameters of operations. Parameters names
should help with the identification and use of the operation. Using a single letter is incon-
siderate. Using generic terms is also inconsiderate. Consider the following operation:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Conclusion

HRESULT DoRectangle(IDirect3DSurfaced* sa,
IDirect3DSurfaced* sb,
int nl, int n2, int n3, int n4, int nb);

The problem with this operation is that the reader does not receive the slightest hint from
its name or its parameter names what it does.

If the purpose of the operation is to copy one surface onto another, the name of the oper-
ation merits being changed to something along the lines of CopySurfaceToSurface(). If the
integer values represent anything but arbitrary numbers, then what the numbers repre-
sent merit being identified with parameter names.
CopySurfaceToSurface(IDirect3DSurface9* SourceSuface,

IDirect3DSurface9* DestinationSurface,

int NumberOfRects, int DestinationRow,
int DestinationCol, int NumOfCols, int NumOfRows);

The user gains from the second version of the operation a fairly clear idea of what the
operation is about and what values it uses to accomplish its work. To clear up the last few
details, you can add a line of documentation.

Conclusion

Libraries of code can be created from collections of usable snippets. Libraries can also be
the result of long, concerted, and well-designed efforts. An example of the first type of
library might be the collection of code that you accumulate over the years as you work on
different projects. Snippets are short bodies of code that accomplish specific tasks but that
can be adapted fairly readily to different contexts.

Designed libraries take an entirely different turn. They are designed to accommodate a
wide variety of uses in different contexts. They seldom require adaptation. Fully designed
libraries are tested like any other software product. They are tuned and optimized. Users
of designed libraries are presented with an interface that attempts to hide details of imple-
mentation from them.

Well-crafted code is often readily suitable for reuse, but even then, if it is to become a part
of a planned library, it usually requires reworking. Reworking extends to both writing the
code so that it is easy to use and maintain and providing good documentation. This chap-
ter moved from identifying a few standard sources of reusable code (game engines and
formalized function and container libraries) to a few of the practices that you can use to
tune code for reuse. The goal has been to suggest a few of the many things you can do to
enhance your code through the use of libraries or, on the other hand, to tune your code
so that it might better qualify for reusability.

Among the books that provide good information on libraries and how to craft or rewrite
code for reuse are the following:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

199

200

Chapter 5 = Old Is Good—The Library Approach

Cargill, Tom. C++ Programming Style. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1992.

Carroll, Martin D. and Margaret A. Ellis. Designing and Coding Reusable C++. Reading,
Massachusetts: Addison-Wesley Publishing Company, 1995.

Hawkins, Brian, Preventative Programming Techniques: Avoid and Correct Common
Mistakes. Hingham, Massachusetts: Charles River Media, 2003.

Hughes, Cameron and Tracey Hughes. Mastering the Standard C++ Classes: An Essential
Reference. New York: John Wiley & Sons, 1999.

Llopis, Noel. C++ for Game Programmers. Hingham, Massachusetts: Charles River
Media, 2003.

McConnell, Steve. Code Complete: A Practical Handbook of Software Construction.
Redmond, Washington: Microsoft Press, 1993.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs.
Boston: Addison-Wesley, 1998.

Misfeldt, Trevor, Gregory Bumgardner, and Andrew Gray. The Elements of C++ Style. New
York: Cambridge University Press, 2004.

Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and
Solutions. Boston: Addison-Wesley, 2000.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

CHAPTER 6

OBJECT-ORIENTED
FANTASIES AND REALITIES

a revolution. The revolution is now over, however. Languages such as C++, Java,

and C# have been developed as object-oriented languages, as have Visual Basic and
even Perl, and object-oriented programs characterize every field of programming. With
the capacity of chips to store more code, object-oriented programming now prevails even
in the world of device drivers, where procedural code was once considered superior
because it required less memory. The object-oriented paradigm dominates the program-
ming world because it provides a powerful approach to combating complexity. As the
average program grows in size, so does the need to control complexity. Object-oriented
programs provide one of the most effective means of accomplishing this.

Creating object-oriented programs was once considered something on the order of

The discussion of object-oriented programming provided here accepts the superiority of
the object-oriented paradigm for game development. On the other hand, object-oriented
programming is not the only thing that can be used in game development efforts. The dis-
cussion goes in a number of directions. Among the topics covered are the following:

m Conceptualizing object orientation

Abstraction as a way of limiting the world

Encapsulation as a vehicle of defending a limited world

Strategies for developing classes and systems of classes

Conventions for object-oriented development

Class Beginnings
You likely have heard of object-oriented programming, and if you have developed code

for a game, you probably have done so using object-oriented code. For that reason, it is
201

TEAM LING - LIVe, Informative, Non-cost and cenuine !

202

Chapter 6 = Object-Oriented Fantasies and Realities

assumed that you know a few things about object-oriented programming. Maybe you are
even an accomplished object-oriented programmer. But even if you can create object-
oriented programs, you might become somewhat nervous when a software engineer
shows up and starts using terms like interface, client, or services when talking about class-
es and objects. If this is so, this chapter provides some useful information.

The Concept of Class

In general programming terms, class is a keyword that you use to create customized data
types. Another term for a customized data type is abstract data type. When you use a class,
you create instances of the data type that the class defines. An instance of a class data type
is said to be an object. A class is a static entity that is evoked again and again to create
objects of the class. An object is a dynamic entity that you can create, change, and destroy.

The data type is a model of something. The class data type models objects in two ways. In
one way, it stores information about the object it models. The information about the
object it models is said to be the state of the class object. A class also allows the informa-
tion that the object stores about itself to be changed. The capacity of the object to change
the information it stores is said to be its behavior.

The operations of a class mediate its behavior. In this book, the term operation appears in
place of member function, property, and method. This term is derived from the UML. At
times, however, you might see member function in deference to C++ programmers.

The state of an object is captured in its attributes. Again, derived from usage that the UML
has fostered, attribute makes it possible to avoid confusion arising from such terms as data
member and property.

Scope

The syntax of a C++ class begins with the use of the keyword class, the name of the class,
and opening and closing braces to designate the scope of the class. A semicolon terminates
the declaration. Following is an example:

class CStateMachine

{
1

The braces define the scope of the class. The scope of the class is by default private, which
means that anything declared or defined inside the braces cannot be accessed outside the
class. Usually, the attributes of a class are placed in a private scope. In contrast to private
scope is public scope. In C++, use of the keyword public class makes everything following
it accessible outside the class. Following is an example:

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Class Beginnings

class CStateMachine
{

public: //keyword for public scope
void DoFrame(); //operation can be reached outside the class
private: //keyword for private scope

CStdString m_strNextState; //attribute cannot be reached
b

In this example, CStateMachine() contains an operation called DoFrame() and an attribute
called m_strNextState. DoFrame() is public because it follows the keyword public, and
m_strNextState is private because it follows the keyword private. A third keyword, protected,
allows derived classes to access attributes or operations that follow it. This topic is discussed
at greater length later in this chapter.

Construction

When you create an object using a class in C++, you do so using a constructor. You use a
constructor to create an instance of a class. Creating an instance of a class differs from sim-
ply declaring an identifier that is reserved for the class. When you construct an object, you
allocate memory for it. A constructor is a function that has the same name as the class. It
has no return type. In addition to a constructor, C++ classes can have destructors. A
destructor is a function that has the same name as the class. Its purpose is to remove the
instance of the class from memory. A destructor has no return type. It is preceded with a
tilde (~). Following are some examples:

class CStateMachine

{

public: //keyword for public scope
CStateMachine(); //constructor
~CStateMachine(); //destructor
void DoFrame(); //operation

private: //keyword for private scope
CStdString m_strNextState; //attribute

};

Interface

The list of all public operations that a class provides is said to be its interface. The inter-
face provides a set of services. Note the code sample that follows:

class CStateMachine
{
pubTic:
CStateMachine();
~CStateMachine();
void EnterState(CStdString strName); //interface operations
void HandleGUIEvent(CStdString strObjectName,
CStdString strAction,
CStdString strParams);
void DoFrame();
TEAM LING - Live, Informative, Non-cost and cenuine !

203

204

Chapter 6 = Object-Oriented Fantasies and Realities

SetCurrentState(CState * state); //mutator operation

const CState* GetCurrentState()const; //accessor operation
private:

int GetIndex(CStdString strName); //utility operation

class CState *m_pStates[NUM_STATES];

class CState *m_pCurrentState;

CStdString m_strNextState;
}s

The previous interface consists of seven operations, and each operation provides a service.
Besides the constructor and destructor, operations include EnterState(), Hand1eGUIEvent (),
and DoFrame(). Each of these operations provides a fairly complicated service. Two other
operations provide services of a less complicated type. One is called GetCurrentState(),
which is an accessor operation. It accesses a value that defines the state of the class object.
Another is called SetCurrentState(), which is a mutator operation. A mutator changes a
value that defines the state of the class object.

At the bottom, after the private keyword, is one more operation, GetIndex(). This opera-
tion is said to be a utility operation. It cannot be used outside the class.

You create the class attributes using abstract data types. The first two are of the type
CState. Two instances of (State are created through forward declarations. The forward dec-
laration tells the compiler to wait until it finds the definition of the class that is forward
declared. In this way, you can avoid difficulties that arise when the game has a complex
header structure and might not have reached the files that contain the declarations of the
data types used. The last element’s type, CStdString, is from the Boost library.

class CState; // forward declaration

class CStateMachine
{
public:
CStateMachine();
~CStateMachine();
void EnterState(CStdString strName);
void HandleGUIEvent(CStdString strObjectName,
CStdString strAction,
CStdString strParams);
SetCurrentState(CState *state); //mutator operation
CState* GetCurrentState()const; //accessor operation
void DoFrame();
private:
int GetIndex(CStdString strName);
class CState *m_pStates[NUM_STATES]; //uses the forward declaration
class CState *m_pCurrentState; //uses the forward declaration
CStdString m_strNextState;

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Abstraction

Abstraction

One of the key concepts in object-oriented programming is abstraction. When you
abstract something, you remove it from an immediate context and place it in a more gen-
eralized context. When you create classes, you are concerned with two basic types of
abstraction. One type of abstraction has to do with the things that allow you to recognize
an object. The other type of abstraction has to do with how you determine that changes
can be made to an object. These two forms of abstraction are usually referred to as the
state and the behavior of an object.

Abstract States

Consider, for example, how you might picture a tree. Outside your window, a burly spruce
might stand. You perhaps have a ready picture of a spruce when you close your eyes. The
spruce features silvery, light-green needles and reddish-brown bark. Not far away is a cot-
tonwood tree. This cottonwood tree possesses grayish bark and broad leaves of a light
green color. A third tree might be a willow, with whitish bark and narrow leaves that are
dusty gray-green in color. The immediacy of each context makes necessary the use of
adjectives for distinctions. The more the adjectives come into play, however, the more the
common characteristics of the trees tend to stand out. With respect to the trees mentioned
here, two features receive repeated mention. These are bark and leaves.

A third feature might be the cones or nuts that the trees shed. At least for the trees men-
tioned, you can tell them apart based on their needles or leaves and their bark. An abstrac-
tion of this situation arises when you create a class for describing trees. The class takes the
following form:
class CTree
{
string barkDescription;
string TeafDescription;
b
The class begins with a simple description of the states of the trees mentioned. Using
barkDescription and leafDescription, you can briefly distinguish the objects you create with
the CTree class. You create two attributes. Because you have a way of describing a tree that
you can apply to all of the trees mentioned thus far, the descriptions have been removed
from the immediate contexts of the individual trees and placed in an abstract context.
When something is abstract, it is applicable across many instances of the thing it has been
created to describe.

Abstract Behavior

The work of abstraction continues when you consider the behavior of trees. A forester or
botanist would probably be able to name an immense number of ways in which trees

TEAM LING - LIVe, Informative, Non-cost and cenuine !

205

206

Chapter 6 = Object-Oriented Fantasies and Realities

change from day to day or season to season. The attributes for CTree focus on a few dis-
tinctive features. One of these is the tree’s growth: height. With the addition of this
attribute, you can consider whether the height of the tree changes from time to time. If it
does, you can create an abstraction of the change in the form of an operation. In this case,
the operation can be called SetHeight():

class CTree
{

string barkDescription;

string TeafDescription;

float height;

void SetHeight(fload height);

};

Each of the trees considered has a multitude of qualities. Specific instances of trees have
been abstracted to arrive at a generalized version of a tree. Attributes abstract the state of
trees. Operations abstract their behavior.

Encapsulation

Abstraction is a conceptual undertaking. Encapsulation is a capability of C++ that makes
abstraction possible. You have already seen the beginnings of encapsulation in the previ-
ous discussion of scope. When you limit how and when information stored within an
object can be accessed, you have the beginnings of encapsulation. A class encapsulates
state and behavior.

class CTree
{

private:
string barkDescription;
string leafDescription;
float treeHeight;
pubTic:
void SetHeight(fload height);
}s
With the addition of the scope keywords, you reinforce the way that the class encapsulates
state and behavior. The scope of the class prevents the information that the class stores
from being generally available. The use of the scope keywords refines this further. You can-
not access the information stored in the attributes directly outside the class. You can only
access information about the height of the tree. The accessor operation SetHeight() makes

this possible.

Encapsulation in this way serves as a means for refining abstraction. A class is abstract
because a programmer has arbitrarily determined that only a limited number of a poten-
tially vast number of features of a given entity is relative to the program being written. On

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Encapsulation

the other hand, features of the language—such as braces, keywords, and scope—allow the
abstraction to be achieved through encapsulation. An object encapsulates state and behav-
ior. Abstraction is the means by which the state and behavior of a class are derived from
the many specific instances of things that the class is said to represent.

Cohesion

A class represents an abstraction of some object in the real world. Often, however, a class
emerges from an odd collection of attributes and behaviors and seems to lack a central
focus. Consider the following class:

class CThing
{
string bookName;
string monthName;
string address;
pubTic:
void SetBookName(string bn){bookName = bn;}
void SetMonthName(string mn){monthName = mn;}
void SetAddress(string ad){address = ad;}
int AddNums(int a, int b){return a + b;}
void AddColor(COLOR& color);
b

This class tends to create questions in a number of ways. First, it is not evident what this
class might be used for. Because the name designates no specific object, it is unclear why
this odd collection of data exists. In addition, if you inspect the interface, you find that a
group of accessor operations precedes an operation that adds two integers. An operation
that adds color occurs last.

The problem with the class as a whole is that it is not cohesive. When a class is cohesive, it
has a central, clearly evident line of business, and its interface provides services that
address this line of business. Achieving cohesion within a class involves shaping it so that
its operations bear on the business or entity it abstracts. Consider the following class:

class CArithmetic

{

int numA, numB;

public:
void Add(int a, int b);
void Subtract(int first, int second);
void Divide(int first, int second);
void Multiply(int a, int b);

};

As simple as it is, CArithmetic possesses superior qualities over CThing because CArithmetic
offers a centralized, focused set of services. It is cohesive because it clearly addresses one
idea in both its name and in the work its operations perform.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

207

208

Chapter 6 = Object-Oriented Fantasies and Realities

Given this starting place, when class designers find a class that contains operations that
address several lines of business, their remedy involves creating separate classes and then
moving operations around until each of the resulting classes addresses one line of business.

Responsibilities

When you create a tightly cohesive class, you achieve a much praised design goal, but you
also face a few liabilities. Generally, cohesion of a class can be defined in terms of its respon-
sibilities. If the responsibilities focus on one line of business, all is well. But consider a sit-
uation in which something is missing. The following class illustrates a few problems:

class CSale
{

float saleSub;

float saleTotal;

vector<float>itenms;

float tax;

void AddItem(float item);

void SetTax(float tax);

void SubTotal();
b
The problem here is that operations are missing. For example, although the class clearly
focuses on the business of allowing the user to process a sale, services relating to calculat-
ing the total and the tax are missing. The problem here, then, is that although the respon-
sibilities of the class are cohesive, they are not completely fulfilled. Effective class design in
this instance reduces to examining the process fully to ensure that the class comprehen-
sively encapsulates the attributes and operations that address its responsibilities.

Coupling

Abstract classes work in conjunction with each other to give expression to complex activ-
ities. When you model complex activities, it often becomes necessary to create a large
number of classes. Assume here that you set about modeling a bank account. You think
for a while and then create three classes, as follows:

class CName

{
private:
string firstName;
string lastName;
string middlel;

b
class CAccount
{

private:
CName accountHolder;

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Decoupling

string accountNumber;

};
class CCustomer
{
private:
CName customerName;
string customerNumber;
CAccount(CName cust);
}s

The CAccount class contains an attribute of the CName type, and the CCustomer class contains
attributes of the CAccount and CName types. The result of this set of relationships is that if
you want to use the CAccount, you must also use the CCustomer and CName classes. The class-
es are tightly coupled.

Tight coupling creates a problem because it requires that when you want to perform what
seems to be a simple operation involving, for instance, the setting of the attributes of a sin-
gle object created with an abstract data type, you must learn all sorts of things about other
abstract data types. For example, CCustomer involves you with CAccount and CName. To use
CCustomer, then, you must also use CAccount and CName. The classes are coupled.

Decoupling

Creating tightly coupled classes is possible if you give consideration to what is called data
coupling. All programming languages offer default data types, and users of the language
will readily understand these data types. For C++, the STL provides the string class. If you
change the classes presented earlier so that they communicate with each other using STL
string parameters, you alter the situation so that the classes can still effectively communi-
cate and yet are not tightly cohesive. Consider the following code, altered from the first
version:

class CName
{
string firstName;
string lastName;
string middlel;
string GetFullName(){return firstNametmiddleI+lastName;}

}s

class CCustomer

{
string customerName;
string customerNumber;
string GetCustomerNumber;

b
class CAccount
{

string accountNumber;

TEAM LING - LIVe, Informative, Non-cost and cenuine !

209

210

Chapter 6 = Object-Oriented Fantasies and Realities

string accountHolder;

SetAccountHolder(string fullname);
b
The altered set of classes communicates using STL strings. The capacity to communicate
through strings arises with the use of accessor operations that return strings rather than
abstract objects.

Inheritance

If you ever need to remember the quintessential aspects of object-oriented programming
with C++, tattoo the letters P-I-E on your forearm. P is for polymorphism, I is for inher-
itance, and E is for encapsulation. Now the discussion will turn to inheritance, which
comes in two forms. One form of inheritance begins with a collection of similar or asso-
ciated classes and tries to discover whether a common or generalized version of the class-
es might be created. This is generalization. The other form of inheritance begins with a
single class that stands as a common model or template and queries whether this can be
used to provide a common pattern for a large number of specialized classes that might be
derived from it. This approach is called specialization.

As you might suspect, generalization and specialization imply that you are investigating a
group of classes from two vantage points. It is likely, for example, when you seek to gen-
eralize a set of classes, that you are either engaged in a design effort that will lead to an
implementation effort or that you are engaged in a remedial effort to try to bring order to
a group of classes that seem to offer similar operations that might best be merged into a
common parent entity. Reworking a set of classes tends to be a much more demanding
task than designing and then implementing a set of classes. However, in either case, given
a proper regard for principles of design (see Chapter 4, “Software Design—Much Ado
About Something,” for a review), you can tremendously improve the performance, testa-
bility, and maintainability of your game code through such efforts.

Generalization

Generalization is analogous to induction. Induction involves collecting items until you
have enough of them to begin sorting them according to common features. That, at least,
is one way to put the matter. As an example, imagine that you collect marbles for many
months. At some point, you decide to begin examining your collection. As you examine
the marbles, you find similarities and differences. On the basis of such discoveries, you
begin to arrive at conclusions about how many species of marbles exist, what purposes
marbles can be used for, and so on.

In the design effort for Ankh, it did not take long to conclude that buttons, drop-down list,
sliders, and other visible features of the game could be grouped according to common

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Inheritance

features. Some of these features could be anticipated in an abstract generalized class,
CGUIObect. (For more information on abstract classes, see the section “Abstract Classes”
later in this chapter.) Figure 6.1 illustrates the resulting class hierarchy.

CGUIObject
{abstract}

/\

ClmageButton CSlider CDropDownList

Figure 6.1
An abstract class collects features that several GUI items embody.

In the generalized approach to creating a hierarchy, it was easy to name several GUI items.
After a time, creation of an abstract class, CGUI0bject, that could be used as a pattern for
the GUI items became evident. Reasons for generalization might be summarized along
the following lines:

® Two or more classes have common attributes.

® You see occasions in which the design of your game might benefit from being able
to make use of polymorphism with respect to a group of classes.

m Two or more classes have common interface features.

® Two or more classes might not initially have the same attributes or interfaces, but
with a little rework, you can redefine them so that they possess common attributes
and interface features.

Specialization

Specialization involves finding a class that might be heavily laden with attributes and
operations that address different sets of responsibility. Generally, a class should have a
central responsibility or at least a core set of closely aligned responsibilities. If you see one
class undertaking several lines of business, you probably have a candidate for specializa-
tion. To specialize a group of classes, you begin by investigating the ways in which the class
you initially inspect concentrates on too many responsibilities. An iterative design activi-
ty in Ankh involved a struggle with a catch-all class that was used to manage graphical fea-
tures. This was the class CEntity. After some discussion, it was decided that CEntity should
be defined as an abstract class and then followed by three derived classes: CActor, CProp, and
CItem. Figure 6.2 illustrates the resulting hierarchy.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

211

212 Chapter 6 = Object-Oriented Fantasies and Realities

CEntity
{abstract}

/\

CProp

CActor Cltem

Figure 6.2

CEntity specialized into three implementations.

The process involved examining a single class and deciding that it contained enough
responsibilities to justify specialization. The criteria for such a decision are along the fol-

lowing lines:

= Each of the specialized classes contains at least one unique attribute.

= The classes you specialize differ in ways other than a single value they assign to an
attribute in the generalized class.

= All of the specialized classes have some features that can be defined in the general-

ized class.

= Each of the specialized classes contains at least one unique operation.

Before leaving this topic, consider the second point in greater detail. Needless specializa-
tion occurs when developers create derived classes that do nothing more than assign a dif-
ferent value to an attribute that the generalized class names. Figure 6.3 illustrates an

instance of needless spe-
cialization. Notice that
the classes that imple-
ment the abstract class
do nothing more than
assign a unique value to
a common attribute.

CVehicle
{abstract}
vehicleType:Type
CRover CCrawler
vehicleType:Type=rover vehicleType:Type=crawler

Figure 6.3
Needless association occurs when specialized classes do nothing more
than assign a unique value to a common attribute.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Associations

Associations

The UML designates aggregation and composition as variations of association. As point-
ed out in Chapter 3, “A Tutorial: UML and Object-Oriented Programming,” distinguish-
ing the three notions of how classes relate to each other involves remembering three basic
notions:

m Association. Assume that one class contains an operation in which one of the
parameters is another class type. The two classes are in this way in association with
each other.

m Aggregation. Assume that one class contains a pointer of the type of a second
class. The pointer might or might not be assigned an object, depending on differ-
ent behaviors of the class that contains the pointer. In this respect, then, you can
view the object that the pointer points to as impermanent.

= Composition. Assume that one class contains attributes of another class type. The
attributes are initialized upon construction of the class object. Under no condi-
tions are the attributes not initialized.

These distinctions might not cover all situations and might be defective in some respects,
but they provide you with a starting point from which it might be possible to make sense
of a distinction that the authors of the UML seemed to labor over rather extensively.

For convenience, the term aggregation is used to refer generally to situations in which one
class in some way contains an object of another class. If it is necessary to concentrate on
specific details, the terms will be used with greater precision.

Aggregation or Hierarchy?

Is creating aggregations better than creating hierarchies? In the design of Ankh, aggregation
was preferable to hierarchies. Given the extent to which inheritance occupies a central place
in the world of object-oriented programming, this preference might seem somewhat arbi-
trary.

Inheritance tends to create performance and maintenance issues. The performance issues
arise because deep hierarchies can require that when the constructor for a derived class is
invoked, the constructor for the base classes is invoked also. The result can be heavy
resource use. Maintenance issues arise because a derived class has dependencies on the
parent class. If a derived class depends on values set in the base class, then if the derived
class requires different value types, you must make changes to both the derived class and
the parent class. Such performance and maintenance issues comprise what is known as
inheritance coupling.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

213

214

Chapter 6 = Object-Oriented Fantasies and Realities

Aggregation
Sometimes aggregation is a rea-

sonable alternative to inheri-
tance. The situation encoun-

Inheritance
creates
needless
dependency.

tered on Ankh involved two

classes. One class, called CImage,

loaded an image. The other

ClmageMgr

Aggregation
instead of
inheritance
coupling.

class, called CImageMgr, managed 4

the image after it was loaded.
From one perspective, it made

Clmage

sense to create a base class that
included management and
loading capabilities and a
derived class that specialized the

Clmage

——<> ClmageMgr

loading capabilities for ease of
use. But then inheritance
brought with it a situation in
which any change in the specifi-

Figure 6.4
Aggregation created a dependency structure less characterized
by class coupling.

cations of image would have required changes to two classes. Creating an association solved
the problem. A container of the CImage type was set in the CImageMgr class, which left both
classes with greater independence. To anticipate the need for an alternative image type, the
option of creating an abstract image class was left open. The abstract image class could be
implemented through distinct versions of CImage. Figure 6.4 illustrates the situation.

Composition

Composition can reduce the complexity and
depth of hierarchies. As Figure 6.5 illus-
trates, although a shallow hierarchy was
maintained, composition relationships were
created between (MenuState and the other
classes. The composition relationships occur
low in the hierarchy, thus reducing the over-
all coupling of the system in the event, for
example, that other classes are to be derived
from CState. Composition proves to be more
flexible than inheritance because it allows
complex relationships to be isolated.

CState ClmageButton
4& CPictureBox
CMenuState
CMesh
CEntity
Figure 6.5

Composition can be used to isolate complexity.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Abstract Classes

Abstract Classes

An abstract class is a class that contains at least one abstract operation. In C++, an abstract
operation is known as a virtual operation (or function). A virtual operation offers only a
signature line. To define the virtual operation, you derive a class from the class that con-
tains the virtual operation and then define the operation in the derived class.

C++ offers two basic types of virtual operations. One is called a pure virtual operation and
can be recognized by the terminating null expression (=0). The other might best be called
an abstract operation. It can include a definition of the function. Consider the following
code sample:

class CTop

{
static int number;

pubTic:
virtual void SetVal(string v)=0;
virtual string GetVal()=0;
int GetNumber(){return number++;}
virtual ~CTop(){}

b

int CTop::number = 0;

class CNextA:public CTop
{
private:
string value;
pubTic:
void SetVal(string v){value=v;}
string GetVal(){return value;}
~CNextA(){}
b

class CNextB:public CTop

{

private:
string value;

pubTic:
void SetVal(string v){value=v;}
string GetVal(){return valuetvalue;}
~CNextB(){}

b

CTop is an abstract class that contains two pure virtual operations and one concrete func-
tion. The destructor of CTop is set as virtual so that the inheriting classes can perform
cleanup with their own destructors. The static integer in CTop enables counting of all the
objects created with the two derived classes.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

215

216

Chapter 6 = Object-Oriented Fantasies and Realities

Unless you override the SetVal() and GetVal() operations, the inheriting classes remain
abstract. It is not necessary to override the GetNumber() operation. Table 6.1 provides some
summary information that applies to pure virtual, virtual, and concrete operations.

Table 6.1 Practices of Design

Topic Discussion

Public inheritance For the most part, although C++ provides for private and protected
inheritance, what you are usually seeking is public inheritance.
Public inheritance makes the derived class an instance of the base
class. Private inheritance basically cuts the derived class off from
the base class, so the features of the base class are implemented
wholly in terms that the derived class provides.

Redefinition of operations If you intend to provide operations in a base class that are to be
redefined in a derived class, force the redefinition by making the
base class operations pure virtual.

Pure virtual operations A pure virtual operation is declared as purely virtual. It has no
implementation.
Virtual operations A virtual operation can be defined, and this definition is inherited

by default. A virtual function does not need to be declared in the
inheriting class if the base class definition will suffice.

Concrete operations Concrete operations are inherited and should not be declared in the
derived class. If you declare them, you usually overload them by
changing their parameter list.

Public and virtual When you use public inheritance, you should declare as virtual as
many of the base class operations as possible. This helps establish
that you want the derived class to specialize the base class.

Polymorphism

Working from the CTop, CNextA, and CNextB classes given earlier, you can create an STL vec-
tor to store instances of the two derived classes. The vector created here is of type CTop.
Because CTop serves as a pattern for the derived classes, storage of the derived objects in the
vector container provides an example of polymorphism.

//CTop data type allows the operation to receive
//data from all the derived classes
void ChangeValue(CTop* val);
int main()
{
const int SIZE = 10;
vector<CTop*>1ist;
for(int count = 0; count < SIZE; count++)
{
Tist.insert(Tist.end(), new CNextA);
Tist.insert(list.end(), new CNextB);

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Coupling Problems with Collections of Classes

}
for(count = 0; count < Tist.size();)
{
Tist[count++]1->SetVal("A");
if(count < SIZE/2) //polymorphic passing of 1list items
{
ChangeValue(Tist[count++]);
}
Tist[count++]->SetVal("B");
}
for(count = 0; count < Tist.size(); count++)
{
cout << "\n" << Tist[count]->GetVal();
cout << "\t" << Tlist[count]->GetNumber();
}

for(count = 0; count < Tist.size(); count++)
{
delete Tist [count];

}
/code left out
void ChangeValue(CTop* val)

{
val->SetVal("uUu");

}

You can pass both CNextA and CNextB to the ChangeValue() function because the parameter
of this function is defined as CTop. The displayed values show that polymorphism allows
the values to be changed regardless of the subtype of the class:

A 0 uuuu 1 B 2 AA 3 uu 4
BB 5 A 6 BB 7 A 8 BB 9
A 10 BB 11 A 12 BB 13 A 14
BB 15 A 16 BB 17 A 18 BB 19

Coupling Problems with Collections of Classes

Maintenance problems and complexity can arise during the development of a game if no
one takes time on a regular, iterative basis to examine the relationships between classes
and to develop policies for controlling or reducing coupling and other forms of depen-
dency. Complexity grows randomly during the development effort if programmers regard
classes as an open set of resources that can be extended without risk through inheritance.
Complexity also grows if programmers do not use restraint in the ways they aggregate
classes. Each new derivation or aggregation creates added weight to a given hierarchy.

In light of the dangers that complexity presents, now is a good time to extend a few points
about coupling touched on earlier. The list presented next by no means exhausts the topic,
but it at least establishes a few possible constraints.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

217

218 Chapter 6 = Object-Oriented Fantasies and Realities

= Identities. An identity can arise between two classes, A and B, if class A contains
an instance of class B and class B contains an instance of class A. Several reliable
avenues exist for avoiding identity relationships between classes. Chapter 7, “P Is
for Pattern,” explores a few of these avenues. For now, however, note that most
identities can be resolved between two classes by reworking the associations so that
only one class contains an instance of the other.

= Representation. As mentioned earlier, it is sometimes considered good practice to
include accessor and mutator operations in your classes. The reason for this is not
purely formalistic. Accessors and mutators provide a ready way to prevent one class
from directly accessing data from another class. Direct access of data violates the
general principle of data hiding, which is a particular application of encapsulation.
One class should, as a general rule, interact with another class through a service
interface. If you design the interfaces of the classes you implement so that the data
that the interface supplies serves the needs of many classes, you eliminate the pri-
mary way that representation couples classes.

= Inversion. Inversion occurs when a given class establishes relationships with the
subclasses of another class. In most such situations, the way this happens involves
the creation of a pointer. The class that develops the dependency does so through a
pointer to the subclasses of another class. The problem with this is that a situation
can easily arise in which the client class requires a second pointer. If the second
pointer is to another subclass in the same hierarchy as the first, the complexity of
the client class increases because it now holds two distinct pointer types. The solu-
tion to this problem is to try to implement pointers as high in a hierarchy as is
possible. Polymorphism allows the pointer to the generalized class to accommo-
date references to many subclass instances.

= Inheritance. This type of dependency has already been discussed. One thing to
keep in mind is the extent to which hierarchies create complexities that are related
to construction and destruction of objects. Hierarchies require sensitivity to the
need, for example, of virtual destructors. They require attention to the drawbacks
of initializations of attributes that might be needlessly invoked among base and
derived classes.

= Multiple inheritance. Multiple inheritance involves the use of more than one base
class to create a derived class. C++ allows multiple inheritance. The hazards of this
form of inheritance cannot be overly stressed. Generally, it is best to avoid multiple
inheritance.

Points on Class Design and Implementation

Previous sections have dealt with a variety of notions that are central to object-oriented
programming. At this point, it becomes appropriate to concentrate on some of the issues

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Points on Class Design and Implementation

that arise with the implementation of classes. It is impossible to list in any brief form the
many issues that arise with the implementation of classes in C++. It is possible, however,
to pursue lines of thought that have proven fairly pervasive over time.

Information Hiding

Discussion of encapsulation brings with it a concept that is often viewed as synonymous
with encapsulation but is more a product of policy than anything specifically implied by
scope. The concept is that of information hiding. When you hide information, your goal is
to reduce the complexity of the relations between classes by ensuring that one class knows
as little as possible about the information that another class contains.

The primary means by which information hiding can be achieved are the interface of the
class and the use of the private keyword to deny class users access to any part of a class
that the interface exposes. The importance of this approach to class design and imple-
mentation arises from its bearing on what is sometimes called common coupling.

Common coupling occurs when programmers develop classes in what might be regarded
as an extremely immature way. As an example, consider the situation that arises with the
following section of code:

void CD3DFont::Unload()

{
if(m_pFont)m_pFont->Release();
m_pFont = NULL;

m_iHeight = 0;
Log->Add("Font destroyed: %s",m_strName.c_str());
m_strName = "";

CImage::Unload(); //direct call to a function
//from another class
}

In the previous code sample, a call is made to a function from another class. The implica-
tion here is that the call can be made on a static basis. CImage::Unload() performs some
mysterious work that is invoked at this point with no explanation.

The principle of information hiding stipulates that one class communicates with another
through fairly formalized relationships. Among other things, if a client class accesses infor-
mation from a service class, the client class should use an operation that the interface of the
service class provides. To accomplish this, the client class must contain an instance of the
service class, and it must call information from the service class as much as possible
through the portals that are provided by the parameters of its own interface operations.

In the previous code sample, the use of the external function is especially offensive given
its position inside the CD3DFont::Unload() function. The situation could be improved, how-
ever, if the CD3DFont::Unload() either contained an associated instance of the service class
or received information from the service class through a parameter argument.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

219

220

Chapter 6 = Object-Oriented Fantasies and Realities

Generally, the principle of information hiding stipulates that the operations inside a class
should be self-contained. This policy extends in two directions. In one direction, it per-
tains to the attributes of the class. The attributes should be private, and accessor functions
should regulate how client classes derive information about the attributes. On the other
hand, information about the insides of the operations of the functions should also be pri-
vate. If information enters the scope of the class, it should do so through attributes that
are included in the definition of the class or parameter, set in the interface operation.

Refactoring

The Agile methodology is currently one of the most pervasive approaches to software
development. Methodologies tend to come and go, but they usually gain popularity
because they provide excellent insights into how to develop software. This is certainly true
of the Agile methodology.

The Agile methodology views software development as iterative and test-driven, and a key
element in its success is its advocacy of a practice known as refactoring. According to
Martin Fowler, the originator of the practice, refactoring involves changing software so
that the behavior of the software remains the same while the internal structure of the
software is improved. (See the reference to Martin Fowler at the end of this chapter.)

The success of the Agile approach depends on the ability of developers to create software
to which new behavior can be added without needing to change the existing code. For this
reason, refactoring plays a central role. Refactoring encourages developers to incorporate
the quality of extensibility into the software they create. In this context, extensibility cap-
tures the notion that a body of code can be extended without being changed.

Modularity

Ultimately, object-oriented programming might be said to begin with the idea that soft-
ware can be developed in a modular form. Modularity involves controlling complexity
through encapsulation and abstraction, as noted earlier. But modularity also involves cre-
ating software so that it is, from the start, extensible. The key to extensibility in many ways
lies in abstraction. Abstraction ensures that a given module can be viewed as providing a
service that other modules can use. To make use of the service that the module provides,
the client modules should have to do nothing more than call to the interface that the ser-
vice module provides. Figure 6.6 illustrates the way modules (also called components or
packages) might be depicted in a UML diagram.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Modularity

Stripe 1 e

----- Stripe 2
é”
Figure 6.6
Component or Package architec-

tures, which are based on the

Stripe 2

modular approach to development
that object-oriented programming
fosters, lay the groundwork for

extensibility.

You can view a module as a class or set of classes. You can refer to it as a package or a com-
ponent. Whatever its name, a module provides a limited, defined set of services that con-
tribute to a software system and can be accessed readily as developers add new behavior

to the system.

With iterative and incremental approaches to software development, modularity is crucial;
otherwise, the development activity erodes into a reactive, unstable process. At any given

stage of development, the
modules that comprise the sys-
tem must bear and accommo-
date the addition of new
behavior to the system. As the
discussion of design in Chapter
4 shows, the approach to devel-

Create
Component
Diagram

\ 4

Design
Classes

\ 4

Select Use

opment for Ankh depended on
the creation of robust stripes

Create
Interaction
Diagrams

(components or modules) to
which other stripes could be
added during the development
process. Figure 6.7 illustrates
the cycle of activity that char-

A

—

Modular
Development
Model

Cases/
Requirements

Determine
Stripe

Create Context

/ Diagram
acterized the development
effort. Each iteration began
with an investigation of Figure 6.7

requirements for the next
stripe of development.

The development effort for Ankh was based on modular
development.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

221

222

Chapter 6 = Object-Oriented Fantasies and Realities

Modular development is
ideal for game software
development efforts. Flex-
ibility facilitates the discov-
ery of features that often
provide the most appealing
aspects of games. If an iter-
ative, modular approach
defines the development
process, regular openings
are created for the investi-
gation of how the require-
ments of the game might
be extended to incorporate
newly discovered innova-
tions. On the other hand,
the effort cannot succeed if
the modules that comprise
the existing system are not

The success of each new stripe depends
on the extensibility of previous stripes.

Stripe 4

Figure 6.8
The Ankh development effort was based on the stability and exten-
sibility of the stripes from which each new iteration began.

stable and extensible. Figure 6.8 illustrates the chain of iterations.

What Destroys Modularity?

Chapter 4 explored reasons that design and requirements efforts fail. Besides those, you
can add a number that specifically addresses object-oriented paradigms and the goal of
extensibility. The ideas offered here are derived from the Agile methodology. (See the ref-
erences at the end of this chapter.) Table 6.2 summarizes some of the properties of soft-
ware that tend to reduce extensibility.

Table 6.2 Terms Applied to Extensibility

Problem Description

Rigidity When you cannot change software without difficulty, it is rigid. Tightly coupled classes
that lack clearly defined responsibilities characterize rigid code. Any change tends to
cascade, for example, into the need to effect many changes. Because each change
represents a point at which the system resists change, it is clear how rigidity develops.
Rigidity is resistance to change.

Fragility When you cannot change software without it being broken, it is fragile. Complex, two-
way dependencies often characterize systems that are fragile. For example, if you have
two objects that mutually depend on each other, changing one is likely to break the
other. Were the direction of dependency one-directional, this would be less likely to

happen.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Modularity 223

Problem Description

Immobility When software lacks sequential flow, it tends to be immobile. One example of this is
when a number of global or static variables tend to nail a body of code into place, so
that moving a variable to a local setting requires a fairly involved effort to determine
just how and in what ways the information it works with depends on external
processes.

Software When developers develop software without following a general design, they tend to

viscosity solve problems in random ways. For this reason, among others, reading and under-

Environmental
viscosity

Needless
complexity

Needless
repetition

Opacity

standing the code becomes extremely difficult. The resulting code is akin to an
anthology that collects the works of vastly different writers. The reading can be slow
and painful.

When changing code becomes painful, developers might neglect to implement
changes according to design. One especially common cause of this is slow compi-
lation time. Lack of things like forward declarations and other include-reducing
measures can lead to cumbersome link and build activities. When developers face
painfully long builds, they try to minimize the ways in which they change code. The
result is that they often put design principles aside.

When developers stray from the targeted requirements, they might begin writing
something akin to a work of anticipatory fiction, anticipating features that no one has
planned and that ultimately will never be added to the product. Any unused feature
of the software, such as needlessly normalized classes, tends to add to the bulk of the
software and, ultimately, to the features that require testing and maintenance.
Copying and pasting and premature optimization can increase redundancy. In
addition to needlessly repeated blocks of code, copying and pasting can result in
things like unchanged and thus completely meaningless comments. Variable names
can become completely estranged from their original contexts.

When code is difficult to understand, it takes more time to change. At the same time,
developers habitually seek to optimize code. If code optimization is performed
relatively late in a development effort, the harm might be minimal. On the other
hand, premature optimization can lead to an absurd situation in which developers
need to rewrite code that was written earlier in a project so that they can understand
it clearly enough to change it. If it is assumed that code should always be written so
that it can be changed easily, the assumption that a development process can reach a
point at which it is okay to optimize code into a cryptic essence clearly deserves to be
challenged.

General Remedies

The problems that Table 6.3 presents are restatements of problems that software engineers
have long identified. Such problems destroy modularity because they disrupt the conti-
nuity of the development effort as a planned undertaking. They work counter to the goals
that object-oriented techniques of development establish because they challenge develop-
ment as an undertaking that design guides and requirements constrain. And they lead, in
the end, to a tendency to revert to code-and-test tactics that are characteristic of inveter-

ate hackers.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

224

Chapter 6 = Object-Oriented Fantasies and Realities

Object-oriented programming promotes a philosophy of development that combats the
ills that Table 6.3 details. At the basis of this philosophy rests the disposition to begin every
task by focusing on an entity that can be clearly identified in terms of a set of responsi-
bilities. The virtue of this disposition is that right from the start, developers are encour-
aged to decompose systems into coherent, clearly defined collections of behavior.

Using Refactoring

Refactoring offers a set of powerful analytic tools that augment the basic work of object-
oriented programming. Refactoring offers powerful tools of analysis because it is iterative
and at the same time characterized by a well-tested set of principles and practices. Among
the principles are the following:

= Promote single responsibility. Each class should focus on a single responsibility.

= Promote extensibility. According to this principle, each class should be developed
so that if it is either extended or used as the basis of extension, it does not need to
be changed extensively to accommodate the extension.

= Promote the Liskov Substitution Principle. In other words, when you specialize a
base class, the specialized class should still implement the base class. If the special-
ized class does not fully implement the base class, so that recasting becomes neces-
sary, something is probably wrong.

= Resist dependency inversion. Instead of aggregations at the low level, aggregations
should be limited to the base class. And, if possible, the base class should be
abstract.

= Resist interface segregation. One class should not contain operations that clearly
belong in another class.

Practices of Refactoring

Refactoring involves changing code so that it is easier to maintain. As Fowler and others who
have written extensively on refactoring contend, no definitive set of principles can be said to
determine when you should refactor. One term that appears often in the literature is “smell.”
If you come across a segment of code that you find falls under the metaphor of “smelling
bad,” it is probably time for refactoring. Although this chapter later provides a detailed rep-
resentation of the items that Fowler lists, consider the following situations for starters:

= Classes, operations, or parts of operations might be difficult to understand. You
have programmed to solve a problem, and solving the problem, rather than pre-
paring the program for future changes or readability, has been your central
preoccupation. Now that the primary problem has been solved, you can look
again at the code and change it so that the solution you have implemented can
be understood more easily.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Using Refactoring

= You have written a program that contains duplicated logic. In this case, you
might have found it easy to do something several times rather than making use of
single operations or classes that encapsulate the logic in a clear, precise way.

= You are examining code that you wrote in the past and find it difficult to know
how and where to add additional functionality. You wrote a program that imple-
ments its logic correctly, but now you must add functionality to it. Before you
begin adding more functionality, you can benefit by taking time to simplify the
code to make it easier to work with.

= You have been given a body of code and are expected to understand it. You find
the code you are working with complex and difficult to understand, and you do
not know how to test it. By refactoring the code, you can prepare the way for much
more efficient programming in the future.

As this list indicates, no specific objective needs to mark the beginning of a refactoring
effort. The main emphasis is that as you move forward in a development project, you can
use refactoring to continuously simplify and clarify your code.

Specific llls and Remedies

This chapter does not afford enough space to demonstrate how you refactor code, but it
can point out a few general notions. One of the first is that refactoring is iterative and
incremental. It usually proceeds in small, well-tested steps. As you go, you constantly seek
to expose new opportunities for reducing complexity and making the code you are work-
ing with easier to understand.

Do not confuse refactoring with efforts to optimize code. At times, refactoring can opti-
mize code, but optimizing code often moves in precisely the opposite direction of refac-
toring. Likewise, do not confuse refactoring with an effort to reduce the number of code
lines. Fewer code lines can be a result, but overall, little reduction in the lines of code is
likely to result, and in some cases, the number of code lines might increase.

Refactoring often begins with examining the names of attributes and the names of oper-
ations. It easily involves elimination of redundancies and long, clustered sets of logic.
Refactoring can easily extend to examining hierarchies and component collections of
classes to establish whether a pattern might be substituted for an ad hoc body of code.
Table 6.3 provides a summary of some of the occasions for refactoring that Fowler and
others have named. To supplement the first table, Table 6.4 provides a list of the refactor-
ing techniques that Fowler and others have named.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

225

226

Chapter 6 = Object-Oriented Fantasies and Realities

note

Method and operation, along with member function, designate the same thing. Fowler, following
Java conventions, uses method rather than member function (for C++ programmers) or operation
(for UML users). Likewise, he uses field to refer either to variables that are local to an operation or
to data members (C++) or attributes (UML). This book preserves Fowler's names for the techniques
of refactoring but uses operation to refer to methods and attributes to refer to class data members.

Table 6.3 Occasions for Refactoring

What Prompts
Refactoring

Description

Duplicate code

Long operations

Large classes

Long parameter lists

Divergent change

Shotgun surgery

Feature envy

Data clumps

Primitive obsession

Switch statements

Parallel inheritance
hierarchies

The same code appears several places. Possible remedies: pull up method,
extract method extract class, form template method.

Methods in the class are too long and complex. Possible remedies: extract
method, replace temp with query, replace method with method object, decom-
pose conditional.

A class contains so many operations that they can be subgrouped.
Alternatively, a class contains numerous attributes. Possible remedies: extract
class, extract subclass, extract interface, replace data value with object.

A constructor or an operation contains multiple parameters, many of which
might not be needed. Possible remedies: replace parameter with method,
introduce parameter object, preserve whole object.

A given class has been changed in several ways, each of which represents a
different interpretation of the class. Possible remedies: extract class.

This applies to a set of classes. It might be, when you go to make a single
change, that you have to touch several classes before you can make the
change work. Possible remedies: move method, move field, inline class.

A given method in class A makes more use of class B than it does of class A.
Possible remedies: move method, move field, extract method.

A set of data appears often, in different classes or within a given class, clus-
tered together into some temporary set of values. Possible remedies: extract
class, introduce parameter object, preserve whole object.

A set of primitives that clearly represents a record or some other object is
repeatedly used in a class or set of classes. Possible remedies: replace data
value with object, extract class, introduce parameter object, replace array with
object, replace type code with class, replace type code with subclasses, replace
type code with state/strategy.

Switch statements are used repeatedly throughout a program to redirect
activity through the same basic set of operations. Possible remedies: replace
conditional with polymorphism, replace type code with subclasses, replace
parameter with explicit methods, introduce null object.

You have begun two or more lines of descent from a single base or set of base
classes. Each line of descent tends to carry the same group of operations.
Possible remedies: move method, move field.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

What Prompts
Refactoring

Using Refactoring 227

Description

Lazy classes

Speculative generality

Temporary fields
Message chains

Middle man

Inappropriate intimacy

Alternative classes

with different interfaces

Incomplete
library class

Data class

Refused bequest

Comments

A derived class adds nothing to the hierarchy. Possible remedies: inline class,
collapse hierarchy.

One or more operations have been added to a class in anticipation of a use of
the class that does not yet exist. Possible remedies: collapse hierarchy, inline
class, remove parameter, rename method.

Temporary fields are used within operations that prove difficult to understand.
Possible remedies: extract class, introduce null object.

One object requires an object from another class, which requires an object
from yet another class. Possible remedies: hide delegate.

Class A communicates with class C. Class B conveys most of the communica-
tions between A and C and yet contributes little or nothing to the conversa-
tions. Possible remedies: remove middle man, inline method, replace delegation
with inheritance.

When the class directly accesses information in another class. Possible reme-
dies: move method, move field, change bidirectional association to unidirec-
tional, replace inheritance with delegation, hide delegate.

Two classes might have methods that do the same thing but have different
names. The fact that they do the same thing but are named differently proves
confusing. Possible remedies: remove method, move method.

If you use a library that features classes that contain operations that are in
what you consider the wrong classes, the situation can become confusing.
Also, you might expect a given library class to have an operation that it does
not, so you feel the need to place such an operation in the class. Possible
remedies: introduce foreign method, introduce local extension.

A class is simply a set of data. It has not been developed so that it encapsu-
lates the behavior of the data. Possible remedies: move method, encapsulate
field, encapsulate collection.

A specialized class requires little of the interface that the base class offers.
Possible remedies: replace inheritance with delegation.

After you have refactored your code, you find that many comments are cos-
metic or unneeded. Possible remedies: extract method, introduce assertion.

Source: Martin Fowler, Kent Beck, John Bryant, William Opkyke, and Don Roberts. Refactoring: Improving the Design of
Existing Code (Addison-Wesley: Boston, 1999).

As mentioned, Table 6.4 provides a summary of the refactoring techniques listed by
Fowler and others. The list provided here is but a partial representation of the full list, but
it indicates the richness of approaches to cleaning up code refactoring offers. See the texts
listed at the end of this chapter for a more comprehensive treatment of the subject.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Chapter 6 = Object-Oriented Fantasies and Realities

Table 6.4 Refactoring Techniques

Technique

Description

Change bidirectional association

to unidirectional

Collapse hierarchy

Decompose conditional

Encapsulate collection

Encapsulate field

Extract class

Extract interface

Extract method

Extract subclass

Form template method

Hide delegate

Inline class
Inline method
Inline temp

Introduce assertion

If you have a two-way relationship between classes, and it is
clear that one of the classes no longer needs the services provid-
ed by the other, you can eliminate the superfluous association.

If you have created a subclass, but the subclass has few or no
distinct attributes or functions, you can eliminate or at least
merge the subclass features back into the base class and elimi-
nate the subclass.

If you have a complex if-then-else statement, decompose it
into operations.

An operation returns a collection. Because this can be a costly
operation, you can improve the situation if you provide only
read-only views of the container contents. You can also provide
accessor operations for adding and removing items.

Abide by object-oriented design principles and make attributes
private to the class. Provide accessor and mutator operations.
One class contains operations that perform work that two class-
es should perform. Create two classes and separate the opera-
tions accordingly.

You can create an interface class if you find that two or more
classes share a common set of operations.

If one or more code fragments can be placed in a single opera-
tion, create a single operation with a name that identifies its
purpose.

If two classes share the same features, it makes sense to create a
common base case. (Using language that was introduced earlier,
you can generalize the two classes into a common base class,
which you will probably want to make abstract.)

If you find that you have created the same methods in two or
more specialized classes in a hierarchy, you can move the meth-
ods up the hierarchy.

If class A needs to know about the state of class B, you can cre-
ate a middle class that enables you to obtain the information
you need without closely coupling A and B.

You have a class that apparently has no real purpose. Move its
operations inside another class and delete it.

One function calls another, and the operation called adds noth-
ing. You can put the called operation into the body of its caller.
You have a temp value to which you assign the value that the
operation returns. Take out the temp and use the operation.

If you need to ascertain the state of the program, create an
assertion operation that returns the state.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Technique

Using Refactoring 229

Description

Introduce foreign method

Introduce local extension

Introduce null object
Introduce parameter object

Move field

Move method
Preserve whole object
Pull up method

Remove middleman

Rename method

Replace array with object

Replace data value with object

Replace delegation with inheritance

Replace inheritance with delegation

A relationship exists between classes A and B. A needs B to
have an additional operation, but B cannot be changed. You can
add an instance B to A and use this to create an additional
operation that provides the needed operation.

If you have a class that you cannot modify but you need to add
an additional operation, create a derived class and add the
operation there.

If you have a situation in which you check for a null value, you
can create a class that acts as a null value.

If you have a group of parameters that you should treat as a
single object, create a class to hold them.

If you have a field within a given class that is used more by an
external class than by the one of which it is a member, move it
to the external class.

You have an operation that is used more by another class than
the class of which it is a member. Move it to the other class.

If you sometimes retrieve several values from an object using
several different calls, you can send the whole object instead.

If you have a hierarchy in which several subclasses contain the
same operation, move the operation higher up in the hierarchy.

Picture three classes: CDoctor, CReceptionist, and CPatient.
The CDoctor in this case goes through the CReceptionist to
do everything, and the CReceptionist does nothing other than
deal with CPatients. The CReceptionist can be removed, so
that the CDoctor communicates, say, with both the CPatient
and CReceptionist directly.

If the name of an operation does not clearly indicate the pur-
pose of the operation, change the name.

An attribute of a given class is becoming rather complex to deal
with. You can turn the attribute into a class and then use an
instance of the class in place of the old attribute.

If the attribute of a class becomes complex enough to require
supplemental data or even its own operations, create a separate
class to model this attribute and use an object of the new class
as the attribute.

If you find that you are using several of the operations of an
object used as an attribute, you should probably consider deriv-
ing your class from the class used to create the attribute.

If you have a subclass that makes little use of the features of a
base class, eliminate the subclass relationship and replace it
with one in which you create an instance of the needed class in
the base class.

(continued on next page)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

230 Chapter 6 = Object-Oriented Fantasies and Realities

Table 6.4 Refactoring Techniques (continued)

Technique Description

Replace method with method object If a class contains an inordinately complex method, take the
method out and make it into its own class.

Replace parameter with If you have a single operation that contains a selection state-

explicit methods ment that invokes significantly different actions, break the
selection statement into separate operations.

Replace parameter with method If you have an object that passes the result of an invoked oper-
ation, eliminate the parameter and just use the invoked opera-
tion alone.

Replace temp with query If you have created a temporary variable in which you store the

result of some combination of values and that you use in two
or more situations, replace the temporary value with a query
operation.

Replace type code with subclasses If a type conveys numeric codes that do not change its behavior,
you can replace the numbers with a new class.

Source: Martin Fowler, Kent Beck, John Bryant, William Opkyke, and Don Roberts. Refactoring: Improving the Design of
Existing Code (Addison-Wesley: Boston, 1999). See Table 6.3 for a list of various opportunities of use.

Conclusion

At this point in time, most everyone who is involved in the development of a game engine
is going to use object-oriented programming. Among the key concepts of object-oriented
programming are abstraction, encapsulation, polymorphism, and generalization (also
known as inheritance). It is important to realize that abstraction lies at the basis of most
design efforts. Abstracting the features of a game into a set of objects is one of the main
tasks involved in developing a game engine. This chapter explored the principles and
practices of programming that object-oriented programming fosters.

Use of component architectures helps eliminate some of the complexity that systems of
classes pose. Components (also called modules) offer a way in which groups of classes can
be viewed as providing a central service or set of services to a software system. Developing
software systems incrementally and iteratively using a component architecture based on
collections of classes offers a good way to realize the benefits of software engineering
based on object orientation.

In some ways, for every solution that object-oriented programming provides, a set of
problems also emerges. Avoiding things like closely coupled classes that lack focused
responsibilities requires a great deal of work. One of the most effective approaches
to eliminating the problems that arise through object-oriented programming is to use
refactoring.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Conclusion

Drawing from Martin Fowler, Kent Beck, and others, this chapter offered a summary of
techniques for refactoring. Refactoring involves incremental, iterative development that is
integrated thoroughly with testing. The objective of refactoring is not so much to achieve
the implementation of a specific set of design principles as it is to free code from such
things as complexity, lack of clarity, difficulty of extension, and needless comments.

The following books provide deeper insight into the topics covered in this chapter:

Braude, Eric. Software Design: From Programming to Architecture. Hoboken, New Jersey:
John Wiley & Sons, 2004.

Coplien, James O. Advanced C++ Programming Styles and Idioms. Reading, Massachusetts:
Addison-Wesley, 1992.

Fowler, Martin, Kent Beck, John Bryant, William Opkyke, and Don Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley: Boston, 1999.

Lippman, Stanley B. Inside the C++ Object Model. Reading, Massachusetts:
Addison-Wesley, 1996.

Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Upper
Saddle River, New Jersey: Prentice Hall, 2003.

Meyers, Scott. Effective C++: 50 Specific Ways to Improve Your Programs and Designs.
Boston: Addison-Wesley, 1998.

Meyers, Scott. More Effective C++: 35 New Ways to Improve Your Programs and Designs.
Boston: Addison-Wesley, 1998.

Richter, Charles. Designing Flexible Object-Oriented Systems with UML. Indianapolis:
Macmillan Technical Publishing, 1999.

Sutter, Herb. Exceptional C++: 47 Engineering Puzzles, Programming Problems, and
Solutions. Boston: Addison-Wesley, 2000.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

231

CHAPTER 7

P Is FOR PATTERN

a game. Most patterns show you how to work with a collection of classes. Likewise,

most of the articles and books on patterns illustrate patterns using UML diagrams.
Given this situation, before you try to understand how patterns work, it is a good idea to
familiarize yourself with the topics covered in Chapters 3, “A Tutorial: UML and Object-
Oriented Programming,” and 5, “Old Is Good—The Library Approach.” On the other
hand, you don’t need to put off studying patterns until you have learned UML or object-
oriented programming techniques. In fact, the tendency in recent times has been to study
all three together.

P atterns provide a set of ideas about how to solve problems that arise as you program

When you use patterns, the work you perform as you move from problem to solution
takes place in a context that includes much more than creating the interfaces to classes.
Instead, your work involves finding the pattern that most appropriately solves the prob-
lem you face and then applying your programming skills to elegantly constructing a set of
classes that gives expression to the pattern. Given this beginning, you can then use the
techniques of refactoring to tune your program. (See Chapter 6, “Object-Oriented
Fantasies and Realities.”)

If you use patterns and refactoring in combination with object-oriented programming,
you end up with programs that are easier to understand and maintain. Although the use
of patterns obligates you to learn yet another layer of programming skills, the result jus-
tifies the extra effort. This chapter covers the following topics, among others:

= Where patterns originated

= Patterns in the context of object-oriented programming and game design

m Why patterns improve the quality of your game

TEAM LING - LIVe, Informative, Non-cost and cenuine !

233

234

Chapter 7 = P Is for Pattern

= How to identify a software design pattern
= Nine patterns from the Gang of Four and other sources

= How to document your own pattern

Patterns and Their Contexts

A pattern provides a way to solve a design problem, but a pattern is not simply the solu-
tion to a design problem. Instead, a pattern describes a context in which you might
encounter a given type of design problem, and it helps you identify an approach to design
that might address the design problem. A pattern describes the problem to be solved, the
context in which the problem occurs, and a strategy you can use to solve the problem. To
arrive at an understanding of what programming based on patterns is about, this chapter
begins with a short historical narrative of other approaches to solving programming
problems.

The History of Patterns

The history of patterns begins in the realms of psychology, anthropology, and architec-
ture. In the history of psychology, you might have heard of Carl Jung, who introduced the
term archetype. An archetype is a symbol or collection of symbols that tells you about the
state of your mind. Another use of patterns emerged with what became known as Gestalt
psychology. Here, again, psychologists used patterns as the starting point of therapy. In the
realm of anthropology, you might be familiar with the work of Ruth Benedict, who wrote
an influential book called Patterns of Culture. By studying patterns in relation to cere-
monies or rituals, Ruth Benedict contended, it is possible to understand why people do
what they do. And in the realm of architecture, the name Christopher Alexander possess-
es great significance. He contended that architects should use patterns to shape the space
people live in.

The notion that programmers can enhance their programming practices if they use patterns
achieved widespread recognition in the mid-1990s. A key element in this recognition was
the publication of a text by Eric Gamma, Richard Helm, Ralph Johnson, and John Vlissides
titled Design Patterns: Elements of Reusable Object-Oriented Software. (See the reference at
the end of this chapter.) The emergence of programming based on patterns represents what
might be viewed as the culmination of several phases of programming history. Figure 7.1
summarizes these phases. Understanding how these phases lead progressively toward pat-
terns helps reveal the value of pattern-based programming strategies.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Patterns and Their Contexts

2000 Software
Size
and

Complexity

Pattern-Oriented
Programming

1990

Object-Oriented
Programming

1980

Structured
Programming

1970

Flow and Procedure

1960
Figure 7.1
Objects and patterns result from increased software complexity
size.

Flow Charts

From early on until well into the 1970s, the flow chart as the plan of a program was central
to programming. Programming using this model often assumed that a program consists
of a fairly deterministic course of events. The events occur one after the other, from the
beginning to the end of a program. Because a continuous flow of logic characterized a well-
designed procedural program, programmers considered the use of the go-to statement a
serious problem. Extensive use of such statements could render the logic of a program inde-
cipherable. Programmers adopted flow charts as tools to eliminate go-to statements and
ensure the smooth flow of program logic.

Historically, charting programs worked well because the programs were relatively short by
current standards. Programs were short because computer hardware could not easily
accommodate large bodies of code. Other physical limitations intervened, also.
Programmers often wrote code by hand and then transferred it to punch cards or entered
it for batch processing using Teletype terminals and tape drives. Such work was slow and
painful. For an engrossing account of how such limitations affected game developers, read

TEAM LING - LIVe, Informative, Non-cost and cenuine !

235

236

Chapter 7 = P Is for Pattern

Brad King and John Borland’s Dungeons and Dreamers. One story involves Richard
Garriott’s early programming adventures. Garriott wrote his programs in longhand in
notebooks even before he was sure he had a computer with which to compile them.
Needless to say, given such requirements, precision of intent characterized flow-oriented
programs. (See the reference to King and Borland at the end of this chapter.)

Structured Programming

Structured programming arose during the late 1970s and early 1980s and allowed program-
mers to establish the best practices of functional decomposition. Functional decomposition
involves, among other things, placing the actions that a program uses into functions and then
pulling together the functions to build the overall logic of the program. The readability and
logical success of the program depends on the design of the functions, each of which should,
among other things, have one and only one purpose: provide only one avenue of entrance
(the parameter list), and have only one point of return. A structured program features a long
list of functions and no code that a function does not encapsulate. Structured programming
advocates often discouraged the use of global variables. When global values occurred, the best
practice was to place them in a header file.

Object-Oriented Programming

Object-oriented programming surfaced during the 1980s. A major point of interest for
game developers is Bjarne Stroustrup, who released C++ in 1983. Stroustrup used notions
that he derived from studies of Algol (short for Algorithmic Language) and Simula.

Historians say that Simula (invented in Norway in the 1960s) was the first object-oriented
language. Simula embodied many of the best features of object-oriented programming, but
programmers did not use it widely. Limited demand accounts for the limited use. When
Simula first appeared, programs generally failed to achieve the size and complexity that
were necessary to encourage programmers to break from the paradigms of logical flow and
functional decomposition.

Unlike Simula, C++ enjoyed wide recognition right from the start. Its popularity lay in
part in the way it extended C. C++ allowed C programmers to transition easily to an
object-oriented language. Authorities also explain that the average size of computer pro-
grams, augmented by increased hardware processing powers, required a new paradigm for
controlling complexity. By extending C and providing for encapsulation, inheritance, and
polymorphism, C++ emerged easily as the leading object-oriented language.

The framework forms what you might consider one of the key results of object-oriented
programming. A framework consists of a collection of classes with which a programmer
can create a standard software application. Examples of frameworks are the Microsoft
Win32 API (a procedural C API, not an object-oriented one) and MFC. Such frameworks
provide components that allow programmers to develop Windows applications. The

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Patterns and Their Contexts

framework provides roughly 80 percent of the code that the end product might contain.
The work of the programmer involves creating the functionality that the framework deliv-
ers to the application user. Accounting programs exemplify framework-based software.

Patterns

During the 1990s, with the standardization of C++, the emergence of Java, the widespread
use of SmallTalk, and the general prevalence of object-oriented programming, compo-
nent engineering became prevalent. A component often consists of a collection of classes
that perform a specific service within a software system. Patterns provide a convenient
way to understand components. A component resembles an architectural feature, such as
a sheltering roof or a farmhouse kitchen (to use two examples drawn form Christopher
Alexander). A pattern enables programmers to commence programming tasks with a
component view of their work.

Patterns and Objects

Chapter 6 discusses both object-oriented programming and refactoring. The points cov-
ered are along the following lines:

® Object-oriented programming allows programmers to capture the state and behav-
ior of a real-world object.

m Polymorphism, inheritance, and encapsulation form key elements of object-
oriented programming.

= In addition to inheritance (also known as specialization or generalization), associa-
tion, aggregation, and composition form important facets of object-oriented
programming.

m Refactoring furnishes a rich variety of techniques for eliminating inelegant
programming practices and shaping programs so that others can understand
and maintain them.

To this list, you can now add the work of patterns. Like procedural and structure pro-
gramming, object-oriented programming, combined with refactoring, provides what the-
orists call a design paradigm. A design paradigm is a general way of understanding how to
develop programs. Patterns extend the object-oriented paradigm. Patterns provide
descriptions of commonly encountered design problems that programmers can address
using standard solutions. Figure 7.2 summarizes the dynamic that exists among object-
oriented programming, refactoring, and patterns.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

237

238 Chapter 7 = P Is for Pattern

Enables programmers
to investigate and apply
solutions involving

multiple classes.

Patterns
Describe a solution to a
problem that repeatedly
occurs.

Object-Oriented Programming Creates basic

Allows programs to be created that
encapsulate the state and behavior of data
types derived from objects in the world.

architectural
entities.

Refactoring
Provides a set of standard techniques
for making operations and larger
components easier to understand
and maintain.

Aids with the
refinement of

operations within
classes and relationships
between classes.

Figure 7.2
Object-oriented programming, refactoring, and patterns complement each other.

Pattern Origins

If you want to display a fair degree of sophistication about patterns, read The Timeless Way
of Building (TWB) that the architect Christopher Alexander wrote several decades ago.
(See the full reference at the end of this chapter.) This book provides a meditative, philo-
sophical view of how a great architect understood and solved the problems he typically
faced when designing living space. It is a fundamental document in the history of software
engineering because it establishes a technique for solving problems that can be applied to
any number of software engineering contexts. Consider the following passage:

There is a definable sequence of activities [that] are at the heart of all acts of
building, and it is possible to specify precisely under what conditions these
activities will generate a building [that] is alive. All that can be made so
explicit that anyone can do it (TWB, 10).

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Patterns and Their Contexts

Although the process is precise and can be defined in exact scientific terms,
finally it becomes valuable, not so much because it shows us things [that] we
don’t know, but instead, because it shows us what we know already, only
daren’t admit because it seems so childish and so primitive (TWB, 13).

To make the pattern really useful, we must define the exact range of contexts
where the stated problem occurs and where this particular solution to the
problem is appropriate (TWB, 253).

As you might surmise from the preceding passages, a strong parallel exists between archi-
tectural conception and software design. Alexander contends in so many words that archi-
tectural knowledge consists of a set of solutions embedded in contexts of understanding.
These solutions answer innumerable problems that builders over the centuries have dis-
covered as they have explored different living spaces. Many of the solutions resonate with
simplicity, yet people have consumed lifetimes discovering them. Add to this one other
characteristic. In many instances, the greatest difficulty that builders face begins with the
preservation of the solutions they have discovered. For someone to understand a solution
fully, the builder cannot divorce it from the context in which it was discovered.

The discovery of patterns, then, for builders and software engineers alike, begins in three
places. First, they must preserve the context of the problem. Second, they must describe
the problem. Finally, they must document the problem.

In many cases, programmers use UML diagrams to document patterns explicitly. As
Alexander wrote of building architecture, “If you think you have a pattern, you must be
able to draw a diagram of it” (TWB, 267). Such a statement might sound demanding, but
it remains that UML and other diagram-based approaches to documentation increase the
efficiency of the software development effort.

GoF

Design Patterns: Elements of Reusable Object-Oriented Software, mentioned earlier in this
chapter as the classic work on software patterns, was authored by Eric Gamma, Richard
Helm, Ralph Johnson, and John Vlissides. This group of software engineers has become
known as the Gang of Four (GoF). The appellation has become the basis of a convention
that software engineers use when they document patterns. Pattern developers provide a
reference to the GoF. This activity is covered in greater detail later in this chapter.

One point that the GoF emphasizes is the centrality of pattern discovery. Practices such as
those fostered by refactoring and iterative and incremental design and development
enable you to explore problems in a way that creates opportunities for defining and using

TEAM LING - LIVe, Informative, Non-cost and cenuine !

239

240

Chapter 7 = P Is for Pattern

patterns. Given this orientation, the implication from the first is that the GoF provides a
living document on patterns rather than a statement of law. When you describe the prob-
lem in the context in which it occurred and join this with a description of the solution,
you have a candidate design pattern. You can refer the pattern to a passage in the GoF, but
you are not obligated to find justification for your pattern in the GoF.

Kinds of Patterns

As Figure 7.3 illustrates, design patterns come in many shapes and forms. The GoF initial-
ly provided only three groupings of patterns, all based on purpose. They categorized the
purposes of patterns as creational, structural, and behavioral. To this basic division, the
Gang of Four added a supplemental distinction: scope. Scope allows designers to indicate
whether a pattern, regardless of category, applies primarily to classes or the object instances
of classes. Accordingly, creational patterns relate to creation of objects, structural patterns
concern how classes and objects can be composed, and behavioral patterns emphasize how
classes or objects interact and how responsibility is distributed among them.

Adapter Bridge Abstract Builder
Factory Factory
Proxy Composite Method
Flyweight Facade | | Decorator Prototype Singleton
Chain of eI
Responsibility lterator
Interpreter
State .
Mediator
Visitor
Observer I
Template
Method
Strategy

Figure 7.3
The GoF groups patterns into three categories.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Patterns and Their Contexts

As time has passed, software engineers have tried to find new language for identifying pat-
tern categories. Some say that you can sort patterns into architectural, design, and idiomat-
ic bins. This set of categories parallels the earlier division. Architectural patterns concern
how software engineers can construct entire software systems. Design patterns encompass
the patterns that the GoF proposed. In other words, design patterns involve the creation
of classes and objects. Idiomatic patterns concern approaches to design that are specific to
given programming languages.

A third way of viewing patterns divides them into conceptual, design, and programming
categories. According to this version, a conceptual pattern describes anything that relates
to how a developer might design an application. A design pattern, remaining true to the
GoF notion, covers anything pertaining to collections of classes and objects.
Programming patterns, once again, relate to uses of programming languages.

A Short List of Patterns

The primary list of patterns that software engineers use in the design and development of
software products has remained stable. The primary list consists of the patterns present-
ed by the GoF. At the same time, developers have created many other patterns. Table 7.1
summarizes the patterns that the GoF present. The sections that follow investigate some
of these patterns in detail. Also included is a unique pattern based on the code in Ankh.

Table 7.1 Patterns and Descriptions

Pattern Description

Abstract Factory You need to create several class instances that are derived from the same
abstract class. To accomplish this, you create a single class that manu-
factures the objects you need.

Adapter You have a class that requires a given interface. You cannot change this
class. On the other hand, a class is at hand that provides the services you
require, but the interface is not quite right. To remedy the situation, you
create a class that holds a reference to the class that provides the services
and adapts the interface for use by the class that requires the services.

Bridge You have one class that is a specialization of another. You would like to
make it so that you have more flexibility than what the specialization
provides, so you limit or eliminate the way that the specialization works by
delegating responsibility outside your primary hierarchy to classes in which
you encapsulate the qualities you seek. In this way, rather than creating a
heavy, deep hierarchy, you bridge over to what you need. Aggregation and
composition replace inheritance.

Builder You want to be able to create objects of a given class with a fair degree of
flexibility. To reach this goal, you create a class with several operations that
are capable of either building or acquiring complex features.

(continued on next page)

TEAM LING - LIVe, Informative, Non-cost and cenuine !

241

242 Chapter 7 = P Is for Pattern

Table 7.1 Patterns and Descriptions (continued)

Pattern

Description

Chain of Responsibility

Command

Composite

Decorator

Factory Method

Facade

Flyweight

Interpreter

Iterator

Mediator

Memento

An object from one class passes a request to an object from another class,
which in turn passes a request to an object from yet another class. The chain
can go on. You normalize and control this process by developing handlers
for the chained events.

You must convey a message complex enough to merit the creation of a class
that encapsulates the attributes and operation that comprise the message.
To accomplish this, you create an abstract object from which you can derive
such a command object when needed.

You have a set of objects that you group together to create what you want
to treat as a single component. To accomplish this, you create one class that
serves as an abstraction of the composite class. You can implement the
abstract class to serve as a composite class.

You have one class that offers a given set of functionality. You want to
enhance this functionality without changing the class. To accomplish this,
you create a second class that enhances the functionality of the first. The
second class is a decorator class.

You want to have a user class create varying instances of a service class. To
accomplish this task, you create one class that is able to express the primary
set of needs that defines the user class. You create other classes that anti-
cipate the services that the service class is to offer. Then, within the user
class, you create a factory operation that can determine the required
instances of the service classes.

You have a collection of classes that provide multiple involved but essential
operations that you would like to access in a friendly, familiar way. To reach
this goal, you define a single class that provides a fresh new interface that

has the capabilities you want to access from the collected objects.

You have several specific items that share a common set of features. Rather
than repeating these features, you create one class that allows the objects
to share the feature set.

You have developed a hierarchy of classes that models a set of rules. You
can use an interpreter to evaluate the rules.

You have one class that contains in some way a set of objects. You want to
be able to visit these objects in a specific sequence to convey messages to
them. To accomplish this, you employ an iterator pattern. The iterator pattern
accesses one element at a time and tracks the position of each element
relative to the next.

If you have a set of objects and want to have in place a single class that
encapsulates the way any given client objects might interact with objects in
the set, you can mediate the relationships between the client and the other
objects by using an object from a class that is designed as a mediator.

You want to capture the behavior of a given class and store it for later
retrieval. To accomplish this, you create a class that stores the information
you want to retrieve. In this instance, the information is protected.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Pattern

Patterns and Their Contexts

Description

Proxy

Observer

Prototype

Singleton

State

Strategy

Template Method

Visitor

You do not want to instantiate an object of an especially heavy nature
unless you are sure that the state of your game mandates its instantiation.
To solve this problem, you create a proxy class. The proxy class is a stand-in
class for the heavy class. The proxy class might have the look and feel of the
heavy class, but it serves only as a stand-in until either it or the game knows
that it is time to load the heavy class.

You want to use one class to process events that another class presents. To
make it possible for objects of a first class to notify objects of a second
class, you can follow two courses of action. First, you can create a container
of the second, observed objects in the first class. Second, you can equip the
second class with an interface that allows its objects to be updated readily.

You want to be able to create instances of classes that you cannot name or
do not care to name when you build your system. Imagine, for instance, a
type of object created from graphical primitives according to the state of
your game at a given moment. To meet this need, you create a prototype
pattern. The prototype pattern includes an abstract class that offers an
interface that is common to all the possible concrete instances. The proto-
type pattern also incorporates a creator class that uses the abstract class to
shape specific instances of prototyped classes.

If you need to know that only a single instance of an object can be created,
you can create a singleton class. Generally, a singleton class offers opera-
tions that other classes can access to obtain unique services.

You have a set of states that you want to audit. You can distribute infor-
mation about the set of states across classes that are designed for this
purpose.

You have one class that needs to be configured to accord with differing
occasions of use. Rather than creating multiple versions of this class, you
create a separate class that manages the features of your class so that you
do not need to change it. The second class provides a strategy for the first
class that allows it to meet the requirements of its contexts of use.

You have a class or collection of classes that provides a set of elementary
operations that you have to adapt in small ways every time you want to use
them to effect a slightly altered version of what they do as a group. To avoid
the necessity of writing slightly varied routines repeatedly to accomplish
slightly varied tasks, you create a class that brings these elementary
operations into one group that you can control with a single, facile call.

The class that gathers and orchestrates the features is called a template
method class.

You have one class that needs to communicate with a number of classes
that it contains, say, as compounded objects. To make this possible, in each
of the compounded classes, you create an operation that allows the com-
pounding object to visit it. The compounding object then has an operation
that can traverse through the compounded objects and convey a message
through the visitor operation.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

243

244

Chapter 7 = P Is for Pattern

How to Document Patterns

Approaches to documenting patterns differ. Generally, it is a good idea to use the pattern
template that is considered appropriate in the setting in which you work. At some com-
panies, for instance, a patterns collection group might create a template for patterns. Most
such templates originate with the headings that the GoF uses. The headings of the GoF
template are as follows:

Intent

Also Known As
Motivation
Applicability
Structure
Participants
Collaborations
Consequences
Implementation
Sample Code
Known Uses
Related Patterns

As useful as these headings are in guiding the documentation of patterns, many pattern
developers elect to follow a shorter course. This chapter follows the shorter course and
uses the following headings:

Name

Intent

Problem

Solution

Participants and Collaborators
Consequences
Implementation

GoF Reference

The next few sections offer descriptions of the items in the shorter list. Figure 7.4 provides
a summary of some of the elements of a pattern description.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Patterns and Their Contexts

Things to

Put into a
Pattern Name

Intent Problem Solution

Participants
and Consequences Implementation
Collaborators

GoF
Reference

Figure 7.4
Develop patterns according to current models.

Name

Each pattern possesses a unique name. As with the name of a class, the name of a pattern
should serve as a mnemonic for the solution that the pattern implements. As you can see
from the patterns that Table 7.1 lists, the names that the GoF created emphasize the solu-
tion rather than the problem. Usually, pattern names consist of a single word or a phrase
consisting of no more than three words. The names are brief because the pattern from the
start concerns an abstract entity, and longer names tend to restrict abstraction.

Note that in many instances a given pattern goes by several names. This happens because
developers discover the same pattern in different contexts, document their findings,
and only after publication find that someone else has identified the same pattern. Cross-
references provide a convenient way for pattern developers to identify duplicates. The
literature provides a convention of writing “Also Known As” when several names for the
same pattern have arisen.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

245

246

Chapter 7 = P Is for Pattern

Intent

As the GoF list implies, the intent is what motivates you to document the pattern. Your
intention relates to the context in which you are working and what you want to achieve
with the pattern. The intent you establish might and perhaps should be more than only
the solution to a specific problem; therefore, most designers work toward a generalized
scope. The reason for this is that a pattern that people can use in many contexts through-
out a system is likely to be more successful than one that cannot.

Intent also encompasses the principle(s) of design you seek to concretize through your
pattern. In this respect, you must view a pattern as both a practical solution to a problem
and evidence that a given type of problem can be solved according to a given principle of
design. Statements of intention that resonate practical and theoretical concerns tend to be
more convincing than those that are restricted to practical concerns. If a pattern propos-
es only a theoretical agenda, it is not properly a pattern.

Problem

The problem statement includes a description of the context. Pattern developers some-
times refer to “forces” and “constraints” when specifying the information that a problem
statement ideally includes. A force can be anything that has bearing on the problem, the
context of the problem, or the solution to the problem. Although the discussion of a given
force probably should be restricted to what helps the user of the pattern understand and
apply the pattern, a larger number of factors help identify a problem. Among just a few
forces that come to bear on a problem are whether the problem affects performance, pro-
gram maintenance, program extensibility, and testing.

Forces also work as constraints. Following the lead of two pattern experts, James Coplien
and Brad Appleton, stating a problem involves recognizing the minimal criteria for pat-
tern validity. Among these are the following:

= Concrete. It does not help to state the problem as an abstract principle. If you have
no context of implementation and no specific remedy to provide, you do not yet
have a pattern.

= Supported by evidence. When you document a pattern, you should do so on the
basis of empirical evidence of its efficacy. If you base the validity of the pattern
only on conjectures about how it might help its user, you fall short of providing a
useful product.

= Useful. A pattern that documents an obvious solution is not likely to prove very
useful to anyone. Generally, a pattern gives expression to a principle of software
design. The pattern can help developers bridge a difficult gap between an abstrac-
tion and a practical way to implement code according to the abstraction.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Patterns and Their Contexts 247

= Generality of application. Patterns should not be simple snapshots of the compo-
nents of a system. It is not enough, for example, to capture the way a set of classes
provides a service to your system and then to designate these classes as a pattern.
A pattern has to do with the design of systems in general and needs to show how
someone can achieve a given principle of design in many contexts.

m Grace. Patterns provide a means by which software developers can achieve greater
control over and comfort with the software they create. If a pattern lacks grace, it is
probably not a very good pattern. In this respect, software engineering and archi-
tecture share a concern for engineering aesthetics.

Solution

The solution that a pattern offers should describe how to achieve the solution that the pat-
tern offers. The description can include almost any type of information that you find ben-
eficial. Most texts feature, for example, a UML diagram. Such a diagram can show the
abstract form of the pattern and provide a place to discuss alternative approaches to its
implementation. Generally, pattern developers discuss the solution that the pattern offers
in specific contexts, those that directly answer problem statements. Such an approach
ensures that the presentation of the pattern proceeds quickly and efficiently. After all, the
presentation of the pattern should allow developers to move directly into the implemen-
tation of a patterned solution in the program they are working on. Although theoretical
discussion in this respect can result in extra work, it remains important in the statement
of the solution to provide information that enables a developer to understand the differ-
ent contexts in which to implement the solution.

Participants and Collaborators

The notion that one pattern might relate to others should not seem strange. The abstract
factory pattern, for example, stands as a relative of the method factory pattern. Explaining
one in the light of the other can be helpful. On the other hand, it is also the case that one
pattern incorporates another. For example, a pattern might use an iterator pattern in con-
junction with a command pattern. If this happens, the description of the primary pattern
should include discussion of why and how supplementary patterns are used.

Consequences

When implemented, patterns can have both positive and negative consequences. Every
system is cybernetic. In other words, a change in one part of the system is likely to result
in some impact on other parts of the system. For this reason, documenting negative
results of the implementation of a pattern is as important as documenting what is posi-
tive. In some spheres, developers regard neglect of such documentation of dangers as
unethical, and their stern attitude is probably justified. If you have not thoroughly tested

TEAM LING - LIVe, Informative, Non-cost and cenuine !

248

Chapter 7 = P Is for Pattern

the implementation of a pattern, it is appropriate to at least state that no adverse conse-
quences have as yet been discovered. Generally, however, if a pattern proves successful in
a well-documented set of contexts, little reason exists for not publishing it.

Implementation

Most pattern developers show how to use the pattern by providing code samples. In fact,
developers are likely to regard with skepticism a presentation of a pattern that lacks an
example of implementation. When you provide an example of an implementation, the
documentation you place in the code should be refined. Likewise, developers generally
refrain from showing implantation details that are not immediately relevant to the oper-
ation of the pattern.

GoF Reference

Provide page references to the GoF. Some developers provide chapter references. The
problem with the chapter references is that the chapters do not necessarily explore single
topics. Ideally, the GoF reference points to a specific GoF pattern, but it might also be the
case that the reference points the reader only toward the pattern context.

Applied Patterns
The sections that follow discuss some of the opportunities for implementing patterns for
Ankh. The explanations provided concern the ways that the patterns were interpreted and
implemented rather than the generalized pattern definitions found in texts such as those
by the GoE The patterns that the GoF provide represent inroads to refactoring class rela-
tionships. They can guide the perceptions of the designer as he approaches the task of
improving the quality of a program. The patterns investigated in this respect are as follows:

= Singleton

= Composite

= Chain of Responsibility

= State

= Strategy

m Observer

= Fagade

= Memento

= Command
In addition to applying patterns that the GoF furnished, the team experimented with the

derivation of its own pattern, which it named the boss pattern. This chapter provides both
a diagram and a sample implementation of this class.

TEAM LING - LIVe, Informative, Non-cost and cenuine !

Singleton 249

Singleton

A singleton pattern provides a way that you can restrict a class so that only a single instance
of it can be created. Within the context of Ankh, the CGame class fits into the singleton pat-
tern. The CGame class owns everything; therefore, it provides a context in which it is possi-
ble to access all objects. Creating more than one instance of CGame amounts to creating a
new game. For this reason, during any given session of play, no more than one instance of
the CGame class occurs. Table 7.2 summarizes the features of the singleton pattern.

Table 7.2 Singleton Features

Topic Feature
Intent You want to restrict the use of the class to one instance.
Problem You want to provide a place in which several client objects can

communicate readily, and you want to ensure that you can control
the number of object instances.

Solution You have only one instance of the object.

Participants and Collaborators A single operation creates an instance of the singleton, and one
operation controls how the singleton can be accessed.

Consequences Client objects do not require knowledge of the state of the

singleton object because the singleton object contains the
instances of the client objects.
Implementation You can implement a static instance of the singleton class.
GoF Reference See pages 127-134.

The following code example shows the declaration of the CGame class. The pointers that the
class encapsulates become much more manageable as attributes of a singleton class than
would be the case, for example, than if you declared them as global instances of their
respective classes. A few functions have been added to the class to enable tracking of its
state and version.

class CGame
{
pubTic:
CGame();
~CGame();
// The run method is basically like "main." It does everything.
int Run();
// Get and set operators //////111111111111111111111111
bool IsRunning(){return m_bRunning;}
void SetRunning(bool bRunning){m_bRunning = bRunning;}
[T L i i i iri it
private:
// Here is the massive T1ist of game classes
CGaraphics *m_pGraphics;

TEAM LING - LIVe, Informative, Non-cost and cenuine !

250 Chapter 7 = P Is for Pattern

CCamera *m_pCamera;
CAi *m_pAI;
CPlayer *m_pPlayer[NUM_PLAYERS];
CLog *m_pLog;
CProfile *m_pProfile;
CGuiMgr *m_pGuiMgr;
CImageMgr *m_pImageMgr;
CStateMachine *m_pStateMachine;
CInput *m_pInput;
CFontMgr *m_pFontMgr;
// static int m_iCount;
float m_fVersion;
// Are you running?
bool m_bRunning;
b

note

The approach that the Ankh team took to a singleton differs from standard singleton approaches.
One reason for th